Voici les éléments 1 - 2 sur 2
  • Publication
    Accès libre
    Karst conduit size distribution evolution using speleogenesis modelling
    (2023)
    A. Maqueda
    ;
    ;
    M. Filipponi
    AbstractOne of the critical aspects when modeling groundwater flow in karstic aquifers is to estimate the statistics of the size of the conduits, in conjunction with the connectivity of the karst conduit network. Statistical analysis can be performed on data gathered by speleologists, but a significant fraction of the karst conduit networks is not directly reachable, and therefore, the resulting statistics are incomplete. An alternative method to evaluate the inaccessible areas of a karst conduit network is to simulate numerically the speleogenesis processes. In this paper, we use a coupled reactive-transport model to simulate the evolution of a vertical section of a fractured carbonate aquifer and investigate how the statistical distribution of the fracture apertures evolves. The numerical results confirm that the karstification proceeds in different phases that were previously hypothesized and described (inception, gestation, development). These phases result in a multi-modal distribution of conduit aperture. Each mode has a roughly lognormal distribution and corresponds to a different phase of this evolution. These outcomes can help better characterize the statistical distribution of karst conduit apertures including the inaccessible part of the network.
  • Publication
    Accès libre
    Impact of a stochastic sequential initiation of fractures on the spatial correlations and connectivity of discrete fracture networks
    (2016)
    Bonneau, F
    ;
    Caumon, G
    ;
    Stochastic discrete fracture networks (DFNs) are classically simulated using stochastic point processes which neglect mechanical interactions between fractures and yield a low spatial correlation in a network. We propose a sequential parent-daughter Poisson point process that organizes fracture objects according to mechanical interactions while honoring statistical characterization data. The hierarchical organization of the resulting DFNs has been investigated in 3-D by computing their correlation dimension. Sensitivity analysis on the input simulation parameters shows that various degrees of spatial correlation emerge from this process. A large number of realizations have been performed in order to statistically validate the method. The connectivity of these correlated fracture networks has been investigated at several scales and compared to those described in the literature. Our study quantitatively confirms that spatial correlations can affect the percolation threshold and the connectivity at a particular scale.