Options
Dutler, Nathan
Nom
Dutler, Nathan
Affiliation principale
Fonction
Ancien.ne collaborateur.trice
Identifiants
Résultat de la recherche
7 Résultats
Voici les éléments 1 - 7 sur 7
- PublicationAccès librePoroelasticity Contributes to Hydraulic-Stimulation Induced Pressure Changes(2021-2)
; ; ;Amann, F. ;Jalali, M. ;Villiger, L. ;Krietsch, H. ;Gischig, V. ;Doetsch, J.Giardini, D.High-pressure fluid injections cause transient pore pressure changes over large distances, which may induce seismicity. The zone of influence for such an injection was studied at high spatial esolutions in six decameter-scaled fluid injection experiments in crystalline rock. Pore pressure time series revealed two distinct responses based on the lag time and magnitude of pressure change, namely, a near- and far-field response. The near-field response is due to pressure diffusion. In the far-field, the fast response time and decay of pressure changes are produced by effective stress changes in the anisotropic stress field. Our xperiments confirm that fracture fluid pressure perturbations around the injection point are not limited to the near field and can extend beyond the pressurized zone. - PublicationAccès libreIn situ observation of helium and argon release during fluid-pressure triggered rock deformation(2020-10)
; ;Weber, U. W. ;Brixel, B. ;Krietsch, H.; ;Brennwald, M. S. ;Villiger, L. ;Doetsch, J. ;Jalali, M. ;Gischig, V. ;Amann, F.; ;Klepikova, M.Kipfer, R.Temporal changes in groundwater chemistry can reveal information about the evolution of flow path connectivity during crustal deformation. Here, we report transient helium and argon concentration anomalies monitored during a series of hydraulic reservoir stimulation experiments measured with an in situ gas equilibrium membrane inlet mass spectrometer. Geodetic and seismic analyses revealed that the applied stimulation treatments led to the formation of new fractures (hydraulic fracturing) and the reactivation of natural fractures (hydraulic shearing), both of which remobilized (He, Ar)-enriched fluids trapped in the rock mass. Our results demonstrate that integrating geochemical information with geodetic and seismic data provides critical insights to understanding dynamic changes in fracture network connectivity during reservoir stimulation. The results of this study also shed light on the linkages between fluid migration, rock deformation and seismicity at the decameter scale. - PublicationAccès libreInfluence of reservoir geology on seismic response during decameter-scale hydraulic stimulations in crystalline rock(2020-4-28)
;Villiger, Linus ;Gischig, Valentin ;Doetsch, J. ;Krietsch, Hannes; ;Jalali, Mohammadreza; ;Selvedurai, P. A. ;Mignan, Arnaud ;Plenkers, K. ;Giardini, Domenico ;Amann, FlorianWiemer, StefanWe performed a series of 12 hydraulic stimulation experiments in a 20 m×20 m×20 m foliated, crystalline rock volume intersected by two distinct fault sets at the Grimsel Test Site, Switzerland. The goal of these experiments was to improve our understanding of stimulation processes associated with high-pressure fluid injection used for reservoir creation in enhanced or engineered geothermal systems. In the first six experiments, pre-existing fractures were stimulated to induce shear dilation and enhance permeability. Two types of shear zones were targeted for these hydroshearing experiments: (i) ductile ones with intense foliation and (ii) brittle–ductile ones associated with a fractured zone. The second series of six stimulations were performed in borehole intervals without natural fractures to initiate and propagate hydraulic fractures that connect the wellbore to the existing fracture network. The same injection protocol was used for all experiments within each stimulation series so that the differences observed will give insights into the effect of geology on the seismo-hydromechanical response rather than differences due to the injection protocols. Deformations and fluid pressure were monitored using a dense sensor network in boreholes surrounding the injection locations. Seismicity was recorded with sensitive in situ acoustic emission sensors both in boreholes and at the tunnel walls. We observed high variability in the seismic response in terms of seismogenic indices, b values, and spatial and temporal evolution during both hydroshearing and hydrofracturing experiments, which we attribute to local geological heterogeneities. Seismicity was most pronounced for injections into the highly conductive brittle–ductile shear zones, while the injectivity increase on these structures was only marginal. No significant differences between the seismic response of hydroshearing and hydrofracturing was identified, possibly because the hydrofractures interact with the same pre-existing fracture network that is reactivated during the hydroshearing experiments. Fault slip during the hydroshearing experiments was predominantly aseismic. The results of our hydraulic stimulations indicate that stimulation of short borehole intervals with limited fluid volumes (i.e., the concept of zonal insulation) may be an effective approach to limit induced seismic hazard if highly seismogenic structures can be avoided. - PublicationAccès libreHydraulic stimulation and fluid circulation experiments in underground laboratories: Stepping up the scale towards engineered geothermal systems(2020-1-2)
;Gischig, Valentin ;Giardini, Domenico ;Amann, Florian ;Hertrich, Marian ;Krietsch, Hannes ;Loew, Simon ;Maurer, Hansruedi ;Villiger, Linus ;Wiemer, Stefan ;Bethmann, Falco ;Brixel, Bernard ;Doetsch, J. ;Gholizadeh, Nima ;Driesner, Thomas; ;Evans, Keith F. ;Jalali, Mohammadreza ;Jordan, D. ;Kittilä, A. ;Ma, Xiadong ;Meier, Peter ;Nejati, M. ;Obermann, A. ;Plenkers, K. ;Saar, Martin O. ;Shakas, A.The history of reservoir stimulation to extract geothermal energy from low permeability rock (i.e. so-called petrothermal or engineered geothermal systems, EGS) highlights the difficulty of creating fluid pathways between boreholes, while keeping induced seismicity at an acceptable level. The worldwide research community sees great value in addressing many of the unresolved problems in down-scaled in-situ hydraulic stimulation experiments. Here, we present the rationale, concepts and initial results of stimulation experiments in two underground laboratories in the crystalline rocks of the Swiss Alps. A first experiment series at the 10 m scale was completed in 2017 at the Grimsel Test Site, GTS. Observations of permeability enhancement and induced seismicity show great variability between stimulation experiments in a small rock mass body. Monitoring data give detailed insights into the complexity of fault stimulation induced by highly heterogeneous pressure propagation, the formation of new fractures and stress redistribution. Future experiments at the Bedretto Underground Laboratory for Geoenergies, BULG, are planned to be at the 100 m scale, closer to conditions of actual EGS projects, and a step closer towards combining fundamental process-oriented research with testing techniques proposed by industry partners. Thus, effective and safe hydraulic stimulation approaches can be developed and tested, which should ultimately lead to an improved acceptance of EGS - PublicationAccès libreStress Measurements for an In Situ Stimulation Experiment in Crystalline Rock: Integration of Induced Seismicity, Stress Relief and Hydraulic Methods(2018-9)
;Krietsch, H. ;Gischig, V. ;Evans, K. F. ;Doetsch, J.; ; Amann, F.An extensive campaign to characterize rock stresses on the decameter scale was carried out in three 18–24 m long boreholes drilled from a tunnel in foliated granite at the Grimsel Test Site, Switzerland. The survey combined stress relief methods with hydrofracturing (HF) tests and concomitant monitoring of induced seismicity. Hydrofracture traces at the borehole wall were visualized with impression packer tests. The microseismic clouds indicate sub-vertical south-dipping HFs. Initial inversion of the overcoring strains with an isotropic rock model yielded stress tensors that disagreed with the HF and microseismic results. The discrepancy was eliminated using a transversely isotropic rock model, parametrized by a novel method that used numerical modelling of the in situ biaxial cell data to determine the requisite five independent elastic parameters. The results show that stress is reasonably uniform in the rock volume that lies to the south of a shear zone that cuts the NNW of the study volume. Stress in this volume is considered to be unperturbed by structures, and has principal stress magnitudes of 13.1–14.4 MPa for σ1, 9.2–10.2 MPa for σ2, and 8.6–9.7 MPa for σ3 with σ1 plunging to the east at 30–40°. To the NNW of the uniform stress regime, the minimum principal stress declines and the principal axes rotate as the shear zone is approached. The stress perturbation is clearly associated with the shear zone, and may reflect the presence of more fragmented rock acting as a compliant inclusion, or remnant stresses arising from slip on the shear zone in the past. - PublicationAccès libreObservations of fracture propagation during decameter-scale hydraulic fracturing experiments(: American Rock Mechanics Association, 2018-6-17)
; ; ;Gischig, V. ;Jalali, M. ;Doetsch, J. ;Krietsch, H. ;Villiger, L.Amann, F.Various in-situ hydraulic fracturing experiments were carried out in the naturally fractured, crystalline rock mass of the Grimsel Test Site (GTS) in Switzerland. The purpose was to study the geometry of the newly created fractures and their interaction with the pre-existing fracture network using transient pressure and rock mass deformation observations. Under controlled conditions, six hydraulic fractures with similar injection protocols were executed in two sub-vertical injection boreholes. The rock mass is intersected by two E-W striking shear zones (S3), and two biotite-rich meta-basic dykes with a densely fractured zone in between. The S3 shear-zone intersecting the rock volume of interest acts as a high-permeability connection to the tunnel for the experiments executed south of it. Strong variation in injectivity enhancement, jacking pressure, break down pressure, instantaneous shut-in pressure and fluid flow recovery among the different injection intervals indicate different stress conditions north and south of S3. - PublicationAccès libreThe seismo-hydromechanical behavior during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in situ stimulation experiment(2018-2)
;Amann, F. ;Gischig, V. ;Evans, K. ;Doetsch, J. ;Jalali, R.; ;Krietsch, H.; ;Villiger, L. ;Brixel, B. ;Klepikova, M. ;Kittilä, A. ;Madonna, C. ;Wiemer, S. ;Saar, M.O. ;Loew, S. ;Driesner, T. ;Maurer, H.Giardini, D.In this contribution, we present a review of scientific research results that address seismo-hydromechanically coupled processes relevant for the development of a sustainable heat exchanger in low-permeability crystalline rock and introduce the design of the In situ Stimulation and Circulation (ISC) experiment at the Grimsel Test Site dedicated to studying such processes under controlled conditions. The review shows that research on reservoir stimulation for deep geothermal energy exploitation has been largely based on laboratory observations, large-scale projects and numerical models. Observations of full-scale reservoir stimulations have yielded important results. However, the limited access to the reservoir and limitations in the control on the experimental conditions during deep reservoir stimulations is insufficient to resolve the details of the hydromechanical processes that would enhance process understanding in a way that aids future stimulation design. Small-scale laboratory experiments provide fundamental insights into various processes relevant for enhanced geothermal energy, but suffer from (1) difficulties and uncertainties in upscaling the results to the field scale and (2) relatively homogeneous material and stress conditions that lead to an oversimplistic fracture flow and/or hydraulic fracture propagation behavior that is not representative of a heterogeneous reservoir. Thus, there is a need for intermediate-scale hydraulic stimulation experiments with high experimental control that bridge the various scales and for which access to the target rock mass with a comprehensive monitoring system is possible. The ISC experiment is designed to address open research questions in a naturally fractured and faulted crystalline rock mass at the Grimsel Test Site (Switzerland). Two hydraulic injection phases were executed to enhance the permeability of the rock mass. During the injection phases the rock mass deformation across fractures and within intact rock, the pore pressure distribution and propagation, and the microseismic response were monitored at a high spatial and temporal resolution.