Voici les éléments 1 - 4 sur 4
  • Publication
    Accès libre
    Contributions to the hydrology and hydrogeology of the Nubian Sandstone Aquifer of Northern Chad
    Cette thèse étudie la géologie, la météorologie, l’hydrologie et la géochimie des eaux souterraines de l’Aquifère des Grès de Nubie (NSAS) du Nord du Tchad, avec l’objectif de développer un modèle conceptuel de l’organisation des écoulements souterrains. L’Aquifère des Grès de Nubie est l’un des plus grands aquifères au monde, partagé entre la Libye, l’Egypte, le Soudan et le Tchad. La région se caractérise par son aridité, par conséquence l’eau souterraine est une ressource précieuse pour ces pays. Le secteur tchadien de l’Aquifère des Grès de Nubie est l’une des zones les moins connues du système. Les majeurs défis de ce projet ont été la difficulté d’accès à la zone d’investigation, ainsi que le manque de données de surveillance sur les eaux souterraines et la météorologie. Pourtant, la région du Nord du Tchad, correspondant à la marge sud du bassin de Kufra, l’un des principaux sous bassin du NSAS, est caractérisée par des taux de précipitation plus importantes. La recharge s’opérant dans cette région pourrait également avoir des implications sur le système aquifère régional, comme déjà suggéré par d’autres chercheurs. Des campagnes de terrain ont été entreprises entre 2013 et 2016, couvrant une superficie approximative de 100,000 km2. Les objectifs de ces campagnes de terrain étaient d’acquérir des données sur la géologie et la sédimentologie du réservoir, sur l’organisation des écoulements souterrains et sur l’hydrochimie (ions majeurs, isotopes stables) des eaux souterraines. Pour palier au manque de données climatiques, la dynamique météorologique et hydrologique a été investiguée en utilisant des données satellitaires (RFE2.0, LandSat8OLI). La composition hydrochimique des eaux souterraines ainsi que les résultats de l’analyse d’images satellitaires (précipitation, évapotranspiration) indiquent que les montagnes de l’Ennedi et du Tibesti correspondent à des zones à fort potentiel de recharge diffuse et concentrée. La recharge s’opère potentiellement annuellement, au courant de quelques averses concentrées durant la saison pluvieuse (mi-juillet à mi-septembre). Au de-là des zones de recharge, une large dépression s’étend entre ces zones montagneuses. Cette dépression est explicitement reconnue comme étant une entité structurelle majeure marquant les directions de la phase tectonique de l’Hercynien. Les principales zones de décharge du NSAS du Nord du Tchad se trouvent le long de cette dépression. La composition hydrochimique des eaux souterraines dans ces zones de décharge est comparable à la composition des eaux souterraines dans d’autres zones de décharge du NSAS. Le schéma conceptuel qui résulte des mesures de terrain de charges hydrauliques est similaire au schéma développé par les chercheurs il y a quatre-vingt années. L’organisation des écoulements souterrains et la composition isotopique indiquent que les zones de décharge (Lacs d’Ounianga, FayaLargeau) sont approvisionnées par un écoulement en provenance de zones ou la recharge s’est principalement opérée durant les époques pluviales passées de la fin du Pléistocène à l’Holocène moyen. Enfin, cette étude démontre le rôle crucial qui jouent les ouadis dans la redistribution d’eau de surface pour les régions montagneuses du Nord du Tchad. Grâce à l’imagerie satellitaire, cette étudie identifie les ouadis les plus actifs de l’Ennedi, ou il y a un fort potentiel de recharge concentrée. Cette ressource renouvelable pourrait être mieux gérée est ainsi garantir un meilleur accès à l’eau pour les populations locales.
  • Publication
    Accès libre
    Hydrogeological and topographical controls on catchment dynamics and their implications for low flows
    (2018)
    Carlier, Claire
    ;
    ;
    Même dans des régions relativement humides comme la Suisse, des périodes de sécheresses plus intenses et prolongées sont attendues à cause des changements climatiques. Afin d’appréhender la sensibilité des ressources en eaux aux sécheresses et d’identifier les régions à risque, une compréhension profonde des mécanismes gouvernant la dynamique des bassins versant en l’absence de précipitation est cruciale. Pendant les périodes de sécheresses, les rivières sont principalement alimentées par l’eau souterraine. Leur débit reflète donc la capacité du bassin versant à libérer de l’eau stockée lors de précédents événements pluvieux. Les caractéristiques des bassins versants qui influencent les processus hydrogéologiques sont ainsi inhérentes à leur dynamique de basses eaux. La sensibilité des bassins versants doit donc être évaluée d’une perspective hydrogéologique.
    Afin de développer des outils pour l’identification des ressources en eaux sensibles aux sécheresses, cette thèse de doctorat explore les influences des propriétés physiographiques sur la dynamique des bassins versants, en mettant l’accent sur leur comportement de basses eaux et sur le rôle de l’hydrogéologie. Les précédentes études consacrées au lien entre les propriétés physiques des bassins versant et leur dynamique négligent souvent leurs caractéristiques souterraines. De plus, l’identification des effets de chaque propriété physique sur le comportement hydrologique des bassins reste complexe. Afin de contrer ces limites, deux approches sont développées : (1) l’utilisation de modèles hydrogéologiques synthétiques permettant d’évaluer systématiquement l’influence des paramètres hydrogéologiques et topographiques sur les basses eaux, et (2) l’étude de la dynamique hydrologique de 22 bassins versants suisses avec la prise en considération détaillée de leurs caractéristiques géologiques et hydrogéologiques (roche en place ou cohérente – “bedrock” en anglais -- et dépôts quaternaires).
    Dans le cadre de la première approche, les propriétés hydrogéologiques et topographiques des bassins (conductivité hydraulique de la roche en place et de l'aquifère alluvial, pente des versants et de la rivière) sont variées systématiquement avec HydroGeoSphere. Ce modèle numérique et distribué simule de manière couplée et simultanée les flux souterrains et de surface. Ainsi, les processus hydrogéologiques sont considérés explicitement et l’impact de chaque propriété physique sur la dynamique des bassins versants peut être quantifié. Ces modèles synthétiques bénéficient grandement à la caractérisation: du lien entre dynamiques de basses eaux et de l’eau souterraine, de l’importance relative de la roche en place et des dépôts alluviaux, et de l’influence combinée de la conductivité hydraulique et de la topographie. En outre, le rôle de propriétés difficilement mesurables sur le terrain, comme la perméabilité de la roche en place (p.ex. la Molasse en Suisse), peut être étudié. Cette caractéristique est d’ailleurs la seule à exercer un effet global sur les basses eaux de tous les bassins synthétiques. Une conductivité relativement haute (p.ex. 10-4 to 10-5 m/s) de la roche en place garantit des débits de basses eaux importants. En fonction de cette valeur, la contribution de la roche en place aux basses eaux peut être favorisée par des versants raides ou diminuée par un relief limité. Lorsque la capacité de la roche en place à subvenir aux bas débits est limitée (quantifiée par le bedrock productivity index BPI), la contribution relative de l’aquifère alluvial peut devenir significative.
    Dans la seconde approche, les propriétés physiques des 22 bassins versants suisses sélectionnés (utilisation et types de sol, topographie, géologie et paramètres météorologiques) sont comparées à une multitude d’indicateurs hydrologiques décrivant toutes les gammes de débits sur 20 ans de mesure. Des indicateurs de débits absolus (p.ex. Q95 à Q5) ainsi que des indicateurs relatifs (p.ex. Q95 divisé par le débit moyen) sont utilisés. La normalisation des indicateurs de débit permet de filtrer l'effet des précipitations et donc de se concentrer sur l'influence des propriétés physiques du bassin sur sa dynamique. Ainsi, les effets de la précipitation et des paramètres physiques sur le comportement hydrologique deviennent distinguables. Les indicateurs absolus de débit, à part les bas débits, dépendent principalement de la météorologie. Les indicateurs relatifs, décrivant tout autant les bas que les hauts débits relatifs, sont en revanche uniquement corrélés aux paramètres géologiques et hydrogéologiques des bassins (% de grès, % de dépôts quaternaires productifs). La capacité d’un bassin versant d’”amortir” le signal de la précipitation peut donc être attribuée à ses caractéristiques géologiques et hydrogéologiques. Les résultats suggèrent que ce potentiel de “stabilisation” des débits, quantifié par exemple par le ratio Q95/Qmean, est favorisé par la présence de grès dans le bassin. De plus, des dépôts quaternaires importants semblent également exercer un effet positif sur les bas débits normalisés.
    Les deux approches sont complémentaires et permettent d’identifier des processus similaires, cruciaux pour la caractérisation de la dynamique générale et de basses eaux des bassins versants. Selon les deux lignes de recherche, une roche en place relativement perméable (p.ex. 10-5 m/s, du grès) est un prérequis pour des débits soutenus lors de périodes sèches. L’influence de dépôts productifs locaux sur la dynamique des bassins est soulignée par les deux approches. Sur la base de ces résultats, deux aides à l’évaluation de la sensibilité des rivières et des aquifères alluviaux aux sécheresses sont développées. Les méthodes dépendent du type et de la qualité des données disponibles. Si celles-ci sont suffisantes, l’estimation de la sensibilité peut être quantitative, alors qu’elle a une valeur qualitative si les données de débits ou de hauteurs piézométriques sont rares. Dans le second cas, des stratégies de surveillance des ressources en eaux peuvent notamment être établies sur la base des lignes directives proposées. En outre, celles-ci proposent un cadre de comparaison du comportement des bassins versants en période sèche., Periods with scarce precipitation will likely occur more frequently and last longer under changing climatic conditions, even in relatively humid regions like Switzerland. To assess the sensitivity of water resources to dry spells and to identify regions that might experience water scarcity issues, a thorough understanding of the mechanisms governing catchment dynamics in the absence of rain is essential. During dry periods, streamflow is mainly fed by groundwater reservoirs and thus reflects the ability of the catchment to release water that has been previously stored during precipitation events. Catchment characteristics that govern groundwater processes are consequently inherent to low-flow dynamics. The sensitivity of catchments to dry periods thus has to be assessed from a hydrogeological perspective.
    This PhD thesis, with the global aim of providing tools for the identification of catchments sensitive to dry conditions, explores the physiographic controls on catchment dynamics with emphasis on low flows and on the role of hydrogeological factors. Previous studies dedicated to the relationship between catchment properties and streamflow dynamics often disregard the subsurface characteristics. Moreover, unravelling the various physical controls on hydrological signatures is complex based on observed data. To cope with these limitations, two approaches are developed: (1) the use of hydrogeological synthetic models, which allow the systematic assessment of topographical and hydrogeological influence on low flows and groundwater storage, and (2) an investigation of streamflow dynamics of 22 Swiss catchments with the consideration of detailed geological and hydrogeological descriptors of both the general geological environment (bedrock lithologies) and alluvial quaternary aquifers.
    In the first approach, catchment hydrogeological and topographical features (bedrock and alluvial hydraulic conductivity, hillslope and river slope) are systematically varied using the numerical model HydroGeoSphere. This software simulates surface and subsurface flow in a fully coupled, distributed way. It thus allows the explicit consideration of groundwater processes and the quantification of the impact of each physical property on catchment dynamics. The synthetic models provide great insights on the relationship between low flows and groundwater processes, on the relative importance of the bedrock and the alluvial aquifer, and on the combined impact of hydraulic conductivity and slope gradients. Moreover, the role of catchment properties whose observation in the field is bound to high uncertainties, such as the hydraulic conductivity of the bedrock, can be explored with the synthetic models. The only catchment property exerting an overall impact on low flows is indeed the hydraulic conductivity of the bedrock. Relatively high hydraulic conductivities (e.g. 10-4 to 10-5 m/s) of the bedrock guarantee sustained low flows. Depending on this value, the contribution of the bedrock to low flows can be increased respectively diminished by steep respectively flat hillslopes. When the capacity of the bedrock to sustain the stream (quantified by the proposed bedrock productivity index BPI) is limited, the relative contribution of the alluvial aquifer can become significant.
    In the second approach, the catchment properties of the 22 selected catchments, encompassing land use, soil, topography and geology, as well as precipitation characteristics, are compared to numerous streamflow indicators describing the entire range of dynamics over 20 years. Absolute (e.g. Q95 to Q5) as well as relative indicators (e.g. Q95 divided by mean discharge) are used. The normalisation of the discharge indicators filters the influence of precipitation, which allows focusing on the impact of catchment properties on discharge dynamics. The meteorological and the catchment controls on hydrological signatures thus become distinguishable. The impact of precipitation is consequent on the absolute discharge indicators except for the low-flow range. The relative indicators, which describe both high and low normalised discharges, are however only correlated to the geological properties of the catchments (% of sandstone and % of productive quaternary deposits). The ability of the catchment to “buffer” the precipitation signal can thus be attributed to its geological and hydrogeological characteristics. The results suggest that this “stabilisation” effect on streamflow, quantified for instance by Q95/Qmean, is sustained by the presence of sandstone in the catchment. Moreover, productive quaternary deposits with a large extent or volume also seem to have a favourable effect on normalised low flows.
    The two approaches are complementary and enable to identify similar processes and governing mechanisms, which are of high relevance for the characterisation of catchment and of low-flow dynamics. According to both approaches, a relatively permeable bedrock (e.g. 10-5 m/s, sandstone) is a prerequisite for sustained streamflow during dry periods. The influence of local productive deposits on catchment dynamics is also highlighted by both methods. Based on these findings, two guidelines are developed to assess the sensitivity of rivers and alluvial aquifers to dry periods. The assessment can be quantitative if adequate time series and data describing the resource exist, whereas it has a qualitative value if scarce discharge or groundwater head data are available. In the latter case, monitoring strategies can for instance be established on the basis of this guideline. Furthermore, it provides a framework for catchment inter-comparison with regards to their behaviour under dry conditions.
  • Publication
    Accès libre
    Advances in characterizing surface water-groundwater interactions : combining unconventional data with complex, fully-integrated models
    (2017)
    Schilling, Oliver S.
    ;
    ;
    Caractériser et simuler les interactions entre les eaux de surface et souterraines s’avère être un enjeu de plus en plus important afin de garantir une eau de qualité pour des puits de pompage situés à proximité d’une rivière. Grâce à la dernière génération de modèles numériques physiques intégrant les écoulements de surface et souterrains, il est maintenant possible de simuler tous les processus physiques gouvernant ces interactions. Cependant, les résultats de ces modèles sont souvent peu satisfaisants. Plusieurs études suggèrent que l’utilisation des charges hydrauliques et des débits de la rivière n’est pas suffisante pour décrire et contraindre ces processus complexes. Une revue bibliographique de ces différentes études est présentée dans le chapitre 2. Afin de parvenir à un meilleur calage de ces modèles, l’utilisation d’autres types d’observations que l’on peut qualifier de non-conventionnelles doit être envisagée. Ces observations non-conventionnelles peuvent être par exemple les flux caractérisant les interactions ou la concentration de solutés. Le but principal de cette thèse de doctorat est de montrer que l’utilisation de ces observations non conventionnelles permet non seulement d’améliorer significativement le calage de ces modèles, mais également de réduire grandement les incertitudes de leurs projections.
    Le chapitre 4 présente le développement d’une nouvelle méthode utilisant l’accroissement de cernes des arbres afin de quantifier l’historique de transpiration des arbres riverains. Les observations non-conventionnelles obtenues grâce à cette méthode ont ensuite été utilisées pour caler un modèle HydroGeoSphere couplant les écoulements souterrains et de surface ainsi que la transpiration des végétaux. Une analyse d’incertitude a permis de quantifier la réduction de l’incertitude induite par l’utilisation de ces observations non-conventionnelles.
    Le chapitre 5 présente l’utilisation de traceurs naturels afin de caler un modèle d’écoulements souterrains et de surface. Cette étude fut réalisée dans le cadre d’un essai de traçage réalisé dans un champ de captage situé en Suisse. Après avoir évalué le temps de résidence de l’eau en utilisant les concentrations en argon-37, une analyse du mélange entre les eaux récemment infiltrées et les eaux plus vieilles a été réalisée en analysant les températures d’infiltration des gaz rares. Ces deux informations qui permettent de décrire les interactions entre la rivière et l’aquifère furent utilisées en plus des observations conventionnelles pour caler et contraindre le modèle de ce champ de captage. Les résultats obtenus montrent clairement une amélioration des capacités prédictives du modèle ainsi qu’une diminution de ses incertitudes.
    Le chapitre 3 décrit une nouvelle méthode utilisant la méthode de Monte-Carlos afin d’identifier des zones non saturées entre le lit d’une rivière et d’un aquifère tous deux aux propriétés hétérogènes. Finalement, le chapitre6 présente une nouvelle approche de simulation utilisant HydroGeoSphere, le filtre de Kalman d'ensemble (EnKF) et du nuage informatique (cloud computing) afin d’augmenter les ressources de calcul qui généralement sont importantes dans le cadre de modélisations numériques complexes., The characterization and simulation of the interactions between surface water and groundwater require observations of hydrological state variables and flow processes. While the latest generation of physically-based flow models allows the integrated simulation of all relevant hydrological processes, the current modelling practice is not adequate to provide reliable predictions. Numerous studies suggest that the main reason for this limited predictive capability is that the complex nature of surface water - groundwater systems cannot be sufficiently described and constrained by only considering the ‘classical’ hydrogeological observations of surface water discharge and hydraulic head. An extensive literature review on this topic is provided in Chapter 2. To overcome the problem of inadequate surface water - groundwater flow model calibration, alternative, unconventional observations should be considered, for example observations of solute concentrations or exchange fluxes. With the appropriate modelling and calibration tools, unconventional observations can not only be successfully included in flow model calibration, but by choosing the right tools it is also possible to quantify the information content of unconventional observations towards reducing the predictive uncertainty of flow models. This was the focus of this thesis and is illustrated in multiple studies: In Chapter 4, a new method that uses tree ring growth records to infer the historic transpiration rates of riparian desert trees of the Tarim River was developed. These new and unconventional observations were successfully used for the calibration of an integrated surface water - groundwater - vegetation flow model built with HydroGeoSphere. A post-calibration uncertainty analysis allowed quantifying the high worth of these unconventional observations in reducing the predictive uncertainty of the flow model. In the study presented in Chapter 5, the established tracer methods using Radon-222 and Helium-Tritium were for the first time complemented by a novel tracer method based on Argon-37, which allowed closing a previously existing gap in residence times characterization. A multi-tracer study carried out on an important drinking water wellfield in Switzerland provided an ideal framework to test the new method alongside other tracer methods. Following the successful characterization of residence times of groundwater in the drinking water wellfield, a quantification of mixing of different types of groundwater, i.e. of recently infiltrated river water and of old groundwater, was achieved through noble gas end-member analysis. The information on mixing of different types of groundwater was subsequently used to inform the parametrization of an integrated surface water - groundwater flow model of the drinking water wellfield. It could be shown that the use of mixing information contains information about exchange fluxes and can successfully inform a flow model parametrization beyond the capabilities of classical observations of groundwater heads and surface water discharge.
    One important aspect of surface water - groundwater interactions is the state of connection between the two water bodies. If unsaturated flow processes are expected in a given surface water - groundwater system, it is important that the numerical model which is used to simulate these systems is capable of simulating unsaturated flow. The study in Chapter 3 is dedicated to the development of a Monte-Carlo-based method which allows the rapid quantification of the potential for unsaturated flow processes underneath heterogeneous riverbeds overlying heterogeneous aquifers. This in turn allows a preliminary assessment of the conceptual model of a give surface water-groundwater system.
    And finally, as the integrated simulation of surface water - groundwater interactions requires a lot of computational resources, especially when unsaturated flow processes dominate, a modelling framework using HydroGeoSphere, Ensemble Kalman Filter and cloud resources was developed in order to leverage typically limited computational resources. This framework is presented in Chapter 6.
  • Publication
    Accès libre
    Evaluating the effect of climate change on groundwater resources: from local to catchment scale
    (2013)
    Möck, Christian
    ;
    ;
    There is strong evidence that climate is changing and will affect the water resources. A major question arising from the evaluation of climate change (CC) impacts on groundwater resources is to what extent groundwater recharge will change. Given that for Switzerland, climate models predict more frequent hot and dry summers in the future while precipitation will tend to increase in winter, a special attention was given to possible changes in the seasonal distribution of recharge. However, to provide robust predictions, uncertainty has to be considered in all simulations. Three uncertainty sources can be distinguished: the latter can originate from climate models uncertainty, the unknown evolution of land use and society in general, and the hydrological models themselves. The role of these three types of uncertainty has received a major attention in this study. Three studies were carried out to evaluate the effect of CC on the hydrological system. Two of these studies were dedicated to the topic of groundwater recharge whereas the third was focused on the CC response of an aquifer system.
    The first recharge related study deals with the question of how uncertainty due to climate models interacts with uncertainty associated with different hydrological models. Although different models were used to simulate groundwater recharge in numerous climate impact studies, it is not yet clear whether models of different complexity give similar recharge predictions for a given climate scenario. Therefore, five different commonly used approaches to simulate groundwater recharge were compared under CC.
    In this analysis models with different complexity were applied over a time span of several years and predictive model bias occurs. Using CC data with more extreme weather conditions increases the resulting bias. The potential for model predictive error increases with the difference between the climatic forcing function used in the CC predictions and the climatic forcing function used in calibration period. The difference between the reference recharge and simulated recharge from physical based but homogenous model as well as semi-mechanistic model are smallest whereas the differences increase with the simple models. The differences are due to structural model deficits such as the limitation of reproducing preferential flow. Thus, results of CC impact studies using the soil water balance approach to estimate recharge need to be interpreted with caution, although the majority of CC impact assessment studies are using this approach. Comparison of both uncertainties, i.e. CC and model simplification, indicate that the highest uncertainty is related to CC, but a model simplification can also introduce a significant predictive error.
    The second recharge related study explores how different crops and crop rotations influence CC effects on groundwater recharge. The predicted temperature increase will doubtlessly lead to an increase in evaporation and can be intensified by the presence of crops. To address this question, we relied on lysimeter data to ensure that the models represent previously measured crop specific effects on groundwater recharge appropriately before attempting to simulate future trends. In addition to effects of crop types, effects of soils types were considered. To study the effect of soil types on recharge was possible thanks to the presence of three Swiss dominant soil types in the lysimeter facility. This study attempts to explore the combined effect of CC and changes in land use on groundwater recharge. We address these questions by combining numerical modeling techniques with high quality lysimeter data. The simulated results of the 1D numerical model indicate that for most crops a decreasing trend occurs (between -5 to -60%) due to higher evapotranspiration rates. However, for catch crops (fast-growing crop that is grown between successive plantings of a main crop) such as Phacelia and Temporary grassland, an increasing recharge trend can also be observed (up to 15%). Using these catch crops in a crop sequence can buffer the decreasing trend in future recharge rates, but the buffer capacity depends strongly on the growing season.
    It is very likely that crop parameters such as leaf area index (LAI) and root depth (RD) will change in future due to increasing water stress (reduced water content in the lysimeter). Therefore, an analysis of the sensitivity of LAI and RD on recharge was carried out. It was found that simulated recharge is inversely related to LAI and RD where recharge is more sensitive to a decrease in LAI than to RD. Therefore, recharge estimates based on literature LAI and RD values probably represent an upper boundary on recharge rate changes for the future. However, in all simulations a high predictive uncertainty in results is given due to the variability originating from general circulation model (GCM) and regional climate model (RCM) combinations and stochastic realisations of the future climatic conditions.
    The final study explored how changes in groundwater recharge might influence groundwater levels for a small aquifer used for water supply. The soil-unsaturated zone-groundwater system was considered as a whole using the physically based model HydroGeoSphere (HGS). The model was based on a wide range of field data. The main objective of this part was to evaluate if seasonal shifts of groundwater recharge can lead to lower groundwater levels in late summer and a potential water shortage. Such effects are mainly expected for highly transmissive systems with a low storage capacity that are expected to react rapidly to seasonal variations in recharge. Therefore, a small aquifer consisting of highly permeable glacio-fluvial deposits and used for water supply for a small town was selected.
    The physically based model HydroGeoSphere (HGS) was used to simulate changes in recharge rates and groundwater levels based on 10 GCM (Global Circulation Model) - RCM (Regional Climate Model) combinations for the A1B emission scenario. Future recharge rates were compared to rates observed during historical drought periods. The recharge drought frequency was quantified using a threshold approach. The flow simulations indicate that the strongest effect of CC on recharge occurs in autumn and not in summer, when the temperature changes are the highest. For the winter season, recharge rates increase for almost all climate model chains and periods. In summer and autumn, temporal water stress, which is defined as reduced drinking water supply, can occur but the intensity depends on the chosen climate model chain. The uncertainty which comes from the variability among different model chains is large although all climate model chains show the same trend in the recharge seasonality. An estimation of drought frequency for a “worst-case” scenario indicates an increase in frequency and intensity under predicted CC. For the water supply in Wohlenschwil, water shortage will most likely more frequently occur in summer and autumn whereas no water stress is predicted for all other seasons.
    All studies demonstrated that the uncertainty surrounding projected recharge rates and groundwater levels are relatively large. Some model chains indicate decreasing recharge and groundwater levels until the end of century, while other show increasing trends. For instance for the Wohlenschwil aquifer a change in annual recharge between -16% and 12% was simulated, while the mean of all climate model chains indicate no changes. Therefore, it is quite difficult to state on the magnitude of the change with high confidence. However, not the mean is important, but rather the seasonality. Almost all climate model chains lead to a change in seasonality but with a different magnitude. In addition, the uncertainty linked to the interannual variability of the climate is highly uncertain and can lead to strongly different results and conclusions depending on analyzed equiprobable stochastic realisations. However, the main uncertainty is linked to GCM-RCM combinations. This uncertainty is followed by the uncertainty originated by natural variability of the climate and model simplification. The calibration of the hydrological model is a further uncertainty, but could be reduced by improving the model calibration, if needed.
    Although uncertainty in all predictions makes it difficult to state on the magnitude of the change with high confidence, it becomes obviously that a proper consideration of possible effects of CC on groundwater are needed. Results indicate that groundwater is only slightly effected in northern Switzerland on an annual basis but temporal changes can lead to periods with low recharge rates and groundwater tables and therefore to limit water supply.