Options
Brunner, Philip
Nom
Brunner, Philip
Affiliation principale
Fonction
Professeur ordinaire
Email
philip.brunner@unine.ch
Identifiants
RĂ©sultat de la recherche
3 RĂ©sultats
Voici les éléments 1 - 3 sur 3
- PublicationAccès libreSalix psammophila afforestations can cause a decline of the water table, prevent groundwater recharge and reduce effective infiltration(2021-8)
;Zhang, Zaiyong ;Wang, Wenke ;Gong, Chengcheng ;Zhao, Ming ;Hendricks Franssen, Harrie-JanAfforestation can reduce desertification and soil erosion. However, the hydrologic implications of afforestation are not well investigated, especially in arid and semi-arid regions. China has the largest area of afforestation in the world, with one-third of the world's total plantation forests. How the shrubs affect evapotranspiration, soil moisture dynamics, and groundwater recharge remains unclear. We designed two pairs of lysimeters, one being 1.2 m deep and the other one 4.2 m deep. Each pair consists of one lysimeter with bare soil, while on the other one a shrub is planted. The different water table depths were implemented to understand how depth to groundwater affects soil moisture and water table dynamics under different hydrological conditions. Soil moisture, water table depth, sap flow, and rainfall were measured concurrently. Our study confirms that for the current meteorological conditions in the Ordos plateau recharge is reduced or even prohibited through the large-scale plantation Salix psammophila. Shrubs also raise the threshold of precipitation required to increase soil moisture of the surface ground. For the conditions we analyzed, a minimum of 6 mm of precipitation was required for infiltration processes to commence. In addition to the hydrological analysis, the density of root distribution is assessed outside of the lysimeters for different water table depths. The results suggest that the root-density distribution is strongly affected by water table depth. Our results have important implications for the determination of the optimal shrub-density in future plantations, as well as for the conceptualization of plant roots in upcoming numerical models. - PublicationAccès libreUsing tree ring data as a proxy for transpiration to reduce predictive uncertainty of a model simulating groundwater?surface water?vegetation interactions(2014-5-18)
;Schilling, O. S. ;Doherty, J. ;Kinzelbach, Wolfgang ;Wang, H. ;Yang, P. N.Summary The interactions between surface water, the vadose zone, groundwater, and vegetation are governed by complex feedback mechanisms. Numerical models simulating these interactions are essential in quantifying these processes. However, the notorious lack of field observations results in highly uncertain parameterizations. We suggest a new type of observation data to be included in the calibration data set for hydrological models simulating interactions with vegetation: Tree rings as a proxy for transpiration. We use the lower Tarim River as an example site for our approach. In order to forestall the loss of riparian ecosystems from reduced flow over a 300 km reach of the lower Tarim River, the Chinese government initiated periodical, ecological water releases. The water exchange processes in this region were simulated for a cross-section on the lower reaches of the Tarim River using a numerical model (Hydro-GeoSphere) calibrated against observations of water tables, as well as transpiration estimated from tree ring growth. A predictive uncertainty analysis quantifying the worth of different components of the observation dataset in reducing the uncertainty of model predictions was carried out. The flow of information from elements of the calibration dataset to the different parameters employed by the model was also evaluated. The flow of information and the uncertainty analysis demonstrate that tree ring records can significantly improve confidence in modeling ecosystem dynamics, even if these transpiration estimates are uncertain. To use the full potential of the historical information encapsulated in the Tarim River tree rings, however, the relationship between tree ring growth and transpiration rates has to be studied further. - PublicationAccès libreUsing tree ring data as a proxy for transpiration to reduce predictive uncertainty of a model simulating groundwater–surface water–vegetation interactions
;Schilling, O. S ;Doherty, J ;Kinzelbach, W ;Wang, H ;Yang, P. NSummary The interactions between surface water, the vadose zone, groundwater, and vegetation are governed by complex feedback mechanisms. Numerical models simulating these interactions are essential in quantifying these processes. However, the notorious lack of field observations results in highly uncertain parameterizations. We suggest a new type of observation data to be included in the calibration data set for hydrological models simulating interactions with vegetation: Tree rings as a proxy for transpiration. We use the lower Tarim River as an example site for our approach. In order to forestall the loss of riparian ecosystems from reduced flow over a 300 km reach of the lower Tarim River, the Chinese government initiated periodical, ecological water releases. The water exchange processes in this region were simulated for a cross-section on the lower reaches of the Tarim River using a numerical model (Hydro-GeoSphere) calibrated against observations of water tables, as well as transpiration estimated from tree ring growth. A predictive uncertainty analysis quantifying the worth of different components of the observation dataset in reducing the uncertainty of model predictions was carried out. The flow of information from elements of the calibration dataset to the different parameters employed by the model was also evaluated. The flow of information and the uncertainty analysis demonstrate that tree ring records can significantly improve confidence in modeling ecosystem dynamics, even if these transpiration estimates are uncertain. To use the full potential of the historical information encapsulated in the Tarim River tree rings, however, the relationship between tree ring growth and transpiration rates has to be studied further.