Voici les éléments 1 - 3 sur 3
  • Publication
    Accès libre
    Uncertainty assessment and implications for data acquisition in support of integrated hydrologic models
    ;
    Doherty, J
    ;
    Simmons, Craig T
    The data set used for calibration of regional numerical models which simulate groundwater flow and vadose zone processes is often dominated by head observations. It is to be expected therefore, that parameters describing vadose zone processes are poorly constrained. A number of studies on small spatial scales explored how additional data types used in calibration constrain vadose zone parameters or reduce predictive uncertainty. However, available studies focused on subsets of observation types and did not jointly account for different measurement accuracies or different hydrologic conditions. In this study, parameter identifiability and predictive uncertainty are quantified in simulation of a 1-D vadose zone soil system driven by infiltration, evaporation and transpiration. The worth of different types of observation data (employed individually, in combination, and with different measurement accuracies) is evaluated by using a linear methodology and a nonlinear Pareto-based methodology under different hydrological conditions. Our main conclusions are (1) Linear analysis provides valuable information on comparative parameter and predictive uncertainty reduction accrued through acquisition of different data types. Its use can be supplemented by nonlinear methods. (2) Measurements of water table elevation can support future water table predictions, even if such measurements inform the individual parameters of vadose zone models to only a small degree. (3) The benefits of including ET and soil moisture observations in the calibration data set are heavily dependent on depth to groundwater. (4) Measurements of groundwater levels, measurements of vadose ET or soil moisture poorly constrain regional groundwater system forcing functions.
  • Publication
    Accès libre
    Interpreting streamflow generation mechanisms from integrated surface-subsurface flow models of a riparian wetland and catchment
    Partington, D
    ;
    ;
    Frei, S
    ;
    Simmons, C. T
    ;
    Werner, A. D
    ;
    Therrien, R
    ;
    Maier, H. R.
    ;
    Dandy, G. C
    ;
    Fleckenstein, J. H
    The understanding of streamflow generation processes is vitally important in the management of water resources. In the absence of the data required to achieve this, Integrated Surface-Subsurface Hydrological Models (ISSHM) can be used to assist with the development of this understanding. However, the standard outputs from these models only enable elicitation of information about hydrological drivers and hydrological responses that occur at the same time. This generally limits the applicability of ISSHMs for the purposes of obtaining an improved understanding of streamflow generation processes to catchment areas that do not exhibit significant storage, travel times or flow depletion mechanisms. In order to overcome this limitation, a previously published Hydraulic Mixing-Cell (HMC) method is improved so that it can be used to follow surface water derived from direct rainfall and groundwater discharge to the stream and adjacent overland flow areas. The developed approach was applied to virtual experiments (based on the Lehstenbach catchment in southeastern Germany), which are composed of two ISSHMs of contrasting scales: (1) a riparian wetland of area 210 m2 and (2) a catchment of area 4.2 km2. For the two models, analysis of modeling results for a large storm event showed complex spatiotemporal variability in streamflow generation and surface water-groundwater interaction. Further analysis with the HMC method elucidated in-stream and overland flow generation mechanisms. This study showed within a modeling framework that identification and quantification of in-stream and overland flow generation better informed understanding of catchment functioning through decomposition of streamflow hydrographs, and analysis of spatiotemporal variability of flow generation mechanisms.
  • Publication
    Accès libre
    Aquifer response to surface water transience in disconnected streams
    Shanafield, Margaret
    ;
    Cook, Peter G
    ;
    ;
    McCallum, James
    ;
    Simmons, Craig T
    Existing analytical solutions to determine aquifer response to a change in stream stage are inappropriate where an unsaturated zone exists beneath the stream, as in the case of disconnected stream-aquifer systems. A better understanding of the relationship between aquifer response and transient stream stage in disconnected systems is therefore required, as this would also aid in the field determination of the status of connection between the stream and aquifer. We use a numerical model to examine transient stream stage and the corresponding water table response. Beneath disconnected streams, the magnitude of head change in the water table level is a balance between the cumulative infiltration during a flow event and the rate at which the water can disperse laterally. Increases in wave duration, stream width, and streambed permeability result in greater infiltrated water volume and therefore a higher peak response at the water table. Conversely, higher aquifer transmissivity and aquifer hydraulic conductivity allow the water to move laterally away from the stream faster, resulting in a smaller head change below the stream. Lower unsaturated storage results in a greater and faster aquifer response because the unsaturated zone can fill more quickly. Under some combinations of parameters, the magnitude of the disconnected head response is more than seven times greater than the change in stream stage driving streambed infiltration; an effect which can never occur beneath a connected stream. The results of this sensitivity analysis are compared to field data from a river in eastern Australia to determine periods of disconnection. Where the change in aquifer head is greater than the change in stream stage, disconnection between the stream and aquifer can be determined.