Options
Kalt, Angelika
Résultat de la recherche
Detrital, metamorphic and metasomatic tourmaline in high-pressure metasediments from Syros (Greece): intra-grain boron isotope patterns determined by secondary-ion mass spectrometry
2008, Marschall, Horst R., Altherr, Rainer, Kalt, Angelika, Ludwig, Thomas
The boron isotopic composition of zoned tourmaline in two metasediments from the island of Syros, determined by secondary-ion mass spectrometry (SIMS), reflects the sedimentary and metamorphic record of the rocks. Tourmaline from a silicate-bearing marble contains small (≤20 μm) detrital cores with highly variable δ11B values (−10.7 to +3.6‰), pointing to a heterogeneous protolith derived from multiple sources. The sedimentary B isotopic record survived the entire metamorphic cycle with peak temperatures of ~500°C. Prograde to peak metamorphic rims are homogeneous and similar among all analysed grains (δ11B ≈ +0.9‰). The varying δ11B values of detrital cores in the siliceous marble demonstrate that in situ B isotope analysis of tourmaline by SIMS is a potentially powerful tool for provenance studies not only in sediments but also in metasediments. A meta-tuffitic blueschist bears abundant tourmaline with dravitic cores of detrital or authigenic origin (δ11B ≈ −3.3‰), and prograde to peak metamorphic overgrowth zones (−1.6‰). Fe-rich rims, formed during influx of B-bearing fluids under retrograde conditions, show strongly increasing δ11B values (up to +7.7‰) towards the margins of the grains. The δ11B values of metamorphic tourmaline from Syros, formed in mixed terrigenous–marine sediments, reflect the B signal blended from these two different sources, and was probably not altered by dehydration during subduction.