Voici les éléments 1 - 1 sur 1
  • Publication
    Accès libre
    Detrital, metamorphic and metasomatic tourmaline in high-pressure metasediments from Syros (Greece): intra-grain boron isotope patterns determined by secondary-ion mass spectrometry
    (2008)
    Marschall, Horst R.
    ;
    Altherr, Rainer
    ;
    ;
    Ludwig, Thomas
    The boron isotopic composition of zoned tourmaline in two metasediments from the island of Syros, determined by secondary-ion mass spectrometry (SIMS), reflects the sedimentary and metamorphic record of the rocks. Tourmaline from a silicate-bearing marble contains small (≤20 μm) detrital cores with highly variable δ11B values (−10.7 to +3.6‰), pointing to a heterogeneous protolith derived from multiple sources. The sedimentary B isotopic record survived the entire metamorphic cycle with peak temperatures of ~500°C. Prograde to peak metamorphic rims are homogeneous and similar among all analysed grains (δ11B ≈ +0.9‰). The varying δ11B values of detrital cores in the siliceous marble demonstrate that in situ B isotope analysis of tourmaline by SIMS is a potentially powerful tool for provenance studies not only in sediments but also in metasediments. A meta-tuffitic blueschist bears abundant tourmaline with dravitic cores of detrital or authigenic origin (δ11B ≈ −3.3‰), and prograde to peak metamorphic overgrowth zones (−1.6‰). Fe-rich rims, formed during influx of B-bearing fluids under retrograde conditions, show strongly increasing δ11B values (up to +7.7‰) towards the margins of the grains. The δ11B values of metamorphic tourmaline from Syros, formed in mixed terrigenous–marine sediments, reflect the B signal blended from these two different sources, and was probably not altered by dehydration during subduction.