Options
Antal, Erika
Résultat de la recherche
A new resampling method for sampling designs without replacement: the doubled half bootstrap
2014-10, Antal, Erika, Tillé, Yves
A new and very fast method of bootstrap for sampling without replacement from a finite population is proposed. This method can be used to estimate the variance in sampling with unequal inclusion probabilities and does not require artificial populations or utilization of bootstrap weights. The bootstrap samples are directly selected from the original sample. The bootstrap procedure contains two steps: in the first step, units are selected once with Poisson sampling using the same inclusion probabilities as the original design. In the second step, amongst the non-selected units, half of the units are randomly selected twice. This procedure enables us to efficiently estimate the variance. A set of simulations show the advantages of this new resampling method.
A Direct Bootstrap Method for Complex Sampling Designs From a Finite Population
, Antal, Erika, Tillé, Yves
In complex designs, classical bootstrap methods result in a biased variance estimator when the sampling design is not taken into account. Resampled units are usually rescaled or weighted in order to achieve unbiasedness in the linear case. In the present article, we propose novel resampling methods that may be directly applied to variance estimation. These methods consist of selecting subsamples under a completely different sampling scheme from that which generated the original sample, which is composed of several sampling designs. In particular, a portion of the subsampled units is selected without replacement, while another is selected with replacement, thereby adjusting for the finite population setting. We show that these bootstrap estimators directly and precisely reproduce unbiased estimators of the variance in the linear case in a time-efficient manner, and eliminate the need for classical adjustment methods such as rescaling, correction factors, or artificial populations. Moreover, we show via simulation studies that our method is at least as efficient as those currently existing, which call for additional adjustment. This methodology can be applied to classical sampling designs, including simple random sampling with and without replacement, Poisson sampling, and unequal probability sampling with and without replacement.
A new resampling method for sampling designs without replacement: the doubled half bootstrap
, Antal, Erika, Tillé, Yves
A new and very fast method of bootstrap for sampling without replacement from a finite population is proposed. This method can be used to estimate the variance in sampling with unequal inclusion probabilities and does not require artificial populations or utilization of bootstrap weights. The bootstrap samples are directly selected from the original sample. The bootstrap procedure contains two steps: in the first step, units are selected once with Poisson sampling using the same inclusion probabilities as the original design. In the second step, amongst the non-selected units, half of the units are randomly selected twice. This procedure enables us to efficiently estimate the variance. A set of simulations show the advantages of this new resampling method.