Voici les éléments 1 - 2 sur 2
  • Publication
    Accès libre
    First-order cancellation of the Cs clock frequency temperature-dependence in Ne-Ar buffer gas mixture
    (2011)
    Boudot, Rodolphe
    ;
    ;
    Dziuban, Piotr
    ;
    ;
    Knapkiewicz, Pawel
    ;
    Dziuban, Jan
    ;
    ;
    Giordano, Vincent
    ;
    Gorecki, Christophe
    Through the detection of Coherent Population Trapping (CPT) resonances, we demonstrate the temperature-dependence cancellation of the Cs clock frequency in microfabricated vapor cells filled with a mixture of Ne and Ar. The inversion temperature at which the Cs clock frequency temperature sensitivity is greatly reduced only depends on the partial pressure of buffer gases and is measured to be lower than 80±C as expected with simple theoretical calculations. These results are important for the development of state-of-the-art Cs vapor cell clocks with improved long-term frequency stability.
  • Publication
    Accès libre
    Quadratic dependence on temperature of Cs 0-0 hyperfine resonance frequency in single Ne buffer gas microfabricated vapour cell
    (2010) ;
    Dziuban, Piotr
    ;
    Boudot, Rodolphe
    ;
    Hasegawa, M.
    ;
    Chutani, R.K.
    ;
    ;
    Giordano, Vincent
    ;
    Gorecki, Christophe
    Presented is the observation of a quadratic temperature dependence of the Cs 0-0 ground state hyperfine resonance frequency in a single Neon (Ne) buffer gas vapour microcell. The inversion temperature, expected to be theoretically independent of the buffer gas pressure, is measured to be about 80-C for two different samples. A proposal to develop chip scale atomic clocks with improved long-term frequency stability, simpler configuration (a single buffer gas instead of a buffer gas mixture) and then relaxed constraints on pressure accuracy during the cell filling procedure is presented.