Voici les éléments 1 - 3 sur 3
  • Publication
    Métadonnées seulement
  • Publication
    Métadonnées seulement
    Influence of capillarity on a simple harmonic oscillating water table: Sand column experiments and modeling
    (2005)
    Cartwright, Nick
    ;
    Nielsen, Peter
    ;
    [1] Comprehensive measurements of the water table response to simple harmonic forcing at the base of a sand column are presented and discussed. In similar experiments, Nielsen and Perrochet ( 2000) observed that fluctuations in the total moisture were both damped and lagged relative to the water table fluctuations. As a result, the concept of a complex effective porosity was proposed as a convenient means to account for the damping and phase lag through its magnitude and argument, respectively. The complex effective porosity then enables simple analytical solutions for the water table ( and total moisture) dynamics including hysteresis. In this paper, these previous experiments are extended to cover a wider range of oscillation frequencies and are conducted for three well-sorted materials with median grain diameters of 0.082, 0.2, and 0.78 mm, respectively. In agreement with existing theory, the influence of the capillary fringe is shown to increase with the oscillation frequency. However, the complex effective porosity model corresponding to the classical Green and Ampt (1911) capillary tube approximations is shown to be inadequate when compared to the data. These limitations are overcome by the provision of an empirical, frequency-dependent complex effective porosity model fit to the data. Using measured moisture retention parameters, numerical simulation of the data solving a nonhysteretic van Genuchten - Richards' equation type model is unable to replicate the observations. Existing results of a hysteretic numerical model are shown to be in good agreement with the extended database.
  • Publication
    Accès libre
    Behavior of a shallow water table under periodic flow conditions
    Cartwright, Nick
    ;
    Nielsen, Peter
    ;
    A new laboratory data set on the behavior of a shallow water table in a sand column aquifer subject to simple harmonic periodic forcing at its base is presented and discussed. The data are analyzed using the dynamic effective porosity, which is defined as the ratio of the rate of change in total moisture to the rate of change in water table elevation; thus, a reduction in this parameter means that the extent of moisture exchange has been reduced relative to a given water table fluctuation. The data show a clear decrease in the dynamic effective porosity with increasing proximity of the water table to the sand surface, which is consistent with previous research under a steadily rising or falling shallow water table. The observed reduction in moisture exchange due to shallowness of the water table has implications for periodic flow scenarios such as the propagation of water table waves in coastal and beach groundwater systems. That is, as moisture exchange is reduced, less work is being done by the flow, and thus, energy dissipation rates for shallow water tables will be reduced relative to the case of a deeper water table. At present no account of the influence of water table shallowness has been included in theories describing water table wave dispersion. The present experiments, in conjunction with the dynamic effective porosity concept, provide a framework in which this gap in knowledge can be further investigated. Additional experiments were designed such that the free surface transgressed the sand surface for part of the oscillation period to investigate the influence of meniscus formation and deformation at the sand surface on periodic flow dynamics. The observed behavior is consistent with previous observations of steady infiltration above shallow water tables, namely, a rapid drop (rise) in pore pressure with the onset of meniscus formation (deformation). A simple “wetting and drying” model is derived, accounting for the variation in effective porosity caused by the free surface transgressing the sand surface, which is shown to accurately capture the observed behavior. A finite element solution of the Richards equation in which the transient upper boundary condition is easily mimicked by means of a surface element with special storage features also shows excellent agreement with the observed data.