Options
Perrochet, Pierre
Nom
Perrochet, Pierre
Affiliation principale
Fonction
Professeur ordinaire
Email
pierre.perrochet@unine.ch
Identifiants
Résultat de la recherche
Voici les éléments 1 - 10 sur 93
- PublicationAccès libreHydraulics and Turbidity Generation in the Milandre Cave (Switzerland)(2021)
; ; ;Marc HessenauerAbstractKarst aquifers may convey significant sediment fluxes, as displayed by the intense turbidity peaks commonly observed at karst springs. The understanding of the origin of the suspended solids discharged at springs is key in assessing spring vulnerability and securing drinking water quality. The mechanisms for turbidity generation and sediment transport in karst are however difficult to investigate because of the general lack of access to the karst conduits. These processes have been examined in the Milandre Cave, which hosts a karst drain of regional importance, for more than 10 years by means of turbidity monitoring both inside and at the outlets of this karst system. Additionally, the composition of the suspended load (particle‐size distribution and Escherichia coli content) has been monitored over the course of a flood event. These data are compared against a numerical simulation of the mean boundary shear stress inside the conduit network. The following conceptual model for sediment transport through the system is derived: during minor flood events, most of the turbidity comes from underground sediment remobilization, while during medium to intense flood events, soil‐derived turbidity also reaches the spring. Hydraulics in the epiphreatic zone is tightly linked with autochthonous turbidity generation (mostly during the flooding and the flushing of conduits). In comparison, allochthonous turbidity is associated with finer particles, higher E. coli, and higher UV fluorescence. This improves the overall understanding of turbidity generation and could help the monitoring and forecast of pollution events at drinking water supplies. - PublicationAccès libreConditioning Multi-Gaussian Groundwater Flow Parameters to Transient Hydraulic Head and Flowrate Data With Iterative Ensemble Smoothers: A Synthetic Case Study(2020)
; ;Jaouher Kerrou; ;Hakim BenabderrahmaneOver the last decade, data assimilation methods based on the ensemble Kalman filter (EnKF) have been particularly explored in various geoscience fields to solve inverse problems. Although this type of ensemble methods can handle high-dimensional systems, they assume that the errors coming from whether the observations or the numerical model are multivariate Gaussian. To handle existing non-linearities between the observations and the variables to estimate, iterative methods have been proposed. In this paper, we investigate the feasibility of using the ensemble smoother and two iterative variants for the calibration of a synthetic 2D groundwater model inspired by a real nuclear storage problem in France. Using the same set of sparse and transient flow data, we compare the results of each method when employing them to condition an ensemble of multi-Gaussian groundwater flow parameter fields. In particular, we explore the benefit of transforming the state observations to improve the parameter identification performed by one of the two iterative algorithms tested. Despite the favorable case of a multi-Gaussian parameter distribution addressed, we show the importance of defining an ensemble size of at least 200 to obtain sufficiently accurate parameter and uncertainty estimates for the groundwater flow inverse problem considered. - PublicationAccès libreRapid identification of transience in streambed conductance by inversion of floodwave responses(2016)
; ;Richon, Julien; ;Vogel, AlexandreStreambed conductance controls the interaction between surface and groundwater. However, the streambed conductance is often subject to transience. Directly measuring hydraulic properties in a river yields only point values, is time-consuming and therefore not suited to detect transience of physical properties. Here, we present a method to continuously monitor transience in streambed conductance. Input data are time series of stream stage and near stream hydraulic head. The method is based on the inversion of floodwave responses. The analytical model consists of three parameters: x, the distance between streambank and an observation well, a, the aquifer diffusivity, and a the retardation coefficient that is inversely proportional to the streambed conductance. Estimation of a is carried out over successive time steps in order to identify transience in streambed conductance. The method is tested using synthetic data and is applied to field data from the Rh^one River and its alluvial aquifer (Switzerland). The synthetic method demonstrated the robustness of the proposed methodology. Application of the method to the field data allowed identifying transience in streambed properties, following flood events in the Rh^one. This method requires transience in the surface water, and the river should not change its width significantly with a rising water level. If these conditions are fulfilled, this method allows for a rapid and effective identification of transience in streambed conductance. - PublicationAccès libreAssessing groundwater quality trends in pumping wells using spatially(2015-7)
; ; ; When implementing remediation programs to mitigate diffuse-source contamination of aquifers, tools are required to anticipate if the measures are sufficient to meet groundwater quality objectives and, if so, in what time frame. Transfer function methods are an attractive approach, as they are easier to implement than numerical groundwater models. However, transfer function approaches as commonly applied in environmental tracer studies are limited to a homogenous input of solute across the catchment area and a unique transfer compartment. The objective of this study was to develop and test an original approach suitable for the transfer of spatially varying inputs across multiple compartments (e.g. unsaturated and saturated zone). The method makes use of a double convolution equation accounting for transfer across two compartments separately. The modified transfer function approach was applied to the Wohlenschwil aquifer (Switzerland), using a formulation of the exponential model of solute transfer for application to subareas of aquifer catchments. A minimum of information was required: (1) delimitation of the capture zone of the outlet of interest; (2) spatial distribution of historical and future pollution input within the capture zone; (3) contribution of each subarea of the recharge zone to the flow at the outlet; (4) transfer functions of the pollutant in the aquifer. A good fit to historical nitrate concentrations at the pumping well was obtained. This suggests that the modified transfer function approach is suitable to explore the effect of environmental projects on groundwater concentration trends, especially at an early screening stage. - PublicationMétadonnées seulementRegional Flow and Deformation Analysis of Basin Fill Aquifer Systems Using Stress?Dependent Parameters(2014)
; ;Cornaton, Fabien Joel - PublicationMétadonnées seulement
- PublicationMétadonnées seulementAnalytical Solution for Modeling Discharge into a Tunnel Drilled in a Heterogeneous Unconfined Aquifer(2013)
;Maréchal, Jean?Christophe ;Lanini, Sandra ;Aunay, Bertrand - PublicationMétadonnées seulement
- PublicationMétadonnées seulementModelling Discharge Rates and Ground Settlement Induced by Tunnel Excavation(2013)
; ;Dematteis, Antonio ;Torri, R ;Monin, N; - PublicationMétadonnées seulement