Voici les éléments 1 - 2 sur 2
Vignette d'image
Publication
Accès libre

Cross-sphere modelling to evaluate impacts of climate and land management changes on groundwater resources

2021-8, Cochand, Fabien, Brunner, Philip, Hunkeler, Daniel, Rössler, Ale, Holzkämper, Annelie

Climate change affects both water resources and agricultural production.With rising temperatures and decreasing summer precipitation, it is expected that agricultural production will be increasingly limited by drought. Where surface- or groundwater resources are available for irrigation, an increase inwaterwithdrawals for irrigation is to be expected. Therefore, quantitative approaches are required to anticipate and manage the expected conflicts related to increased water abstraction for irrigation. This project aims to investigate how agricultural production,water demand for irrigation, runoff and groundwater dynamics are affected by future climate change and howclimate change impacts combinedwith changes in agriculturalwater use affect groundwater dynamics. To answer these research questions, a comprehensive, loosely coupled model approach was developed, combining models from three disciplines: an agricultural plant growth model, a hydrological model and a hydrogeological model. The model coupling was implemented and tested for an agricultural area located in Switzerland inwhich groundwater plays a significant role in providing irrigationwater. Our suggested modelling approach can be easily adapted to other areas. The model results show that yield changes are driven by drought limitations and rising temperatures. However, an increase in yieldmay be realized with an increase in irrigation. Simulation results showthat thewater requirement for irrigation without climate protection (RCP8.5) could increase by 40% by the end of the century with an unchanged growing season and by up to 80%with varietal adaptations. With climate changemitigation (RCP2.6) the increase inwater demand for irrigationwould be limited to 7%. The increase in irrigation (+12mm) and the summer decrease in recharge rates (~20mm/month)with decreasing summer precipitation causes a lowering of groundwater levels (40 mm) in the area in the late summer and autumn. This impact may be accentuated by an intensification of irrigation and reduced by extensification.

Vignette d'image
Publication
Accès libre

Low-flow behavior of alpine catchments with varying quaternary cover under current and future climatic conditions

2020-10, Arnoux, Marie, Brunner, Philip, Schlaefli, Bettina, Mott, Rebecca, Cochand, Fabien, Hunkeler, Daniel

Alpine environments are particularly vulnerable to climatic warming, and long term observations suggest a shift of snow-influenced river discharge towards earlier periods of the year. For water resources management, the seasonal patterns of discharge in alpine areas are particularly relevant, as the shift to lower flows in summer and autumn combined with increased water demand could lead to water shortage in downstream catchments. The storage of groundwater in alpine catchments could significantly modulate how changing climatic conditions influence the annual streamflow regime. However, groundwater storage and its buffering capacity in alpine areas remain poorly understood. Moreover, studies on how climate change will impact water resources in alpine areas rarely consider the influence of geology. In this paper, catchment geology is used as a basis for the classification of future summer low flows behavior of several alpine catchments in Switzerland. Based on the analysis of the relationship between low-flow indicators and geology, the role of unconsolidated quaternary deposits is explored. We show that quaternary deposits play a critical role in the seasonal storage of groundwater, which can contribute to rivers during lowflow periods. Three climate change simulations based on extreme RCP 8.5 scenarios are fed into a conceptual hydrological model to illustrate the buffering role of groundwater. Past and future low flows normalized by mean past and future streamflows appear correlated with the percentage of unconsolidated quaternary deposits. These results highlight that catchments with high groundwater contribution to streamflow relative to precipitation will have a slower decrease in future summer discharge. Therefore, we propose two indicators that can be used to anticipate the response of future summers low flows in alpine areas to climate change: the current winter low flows and the percentage of unconsolidated quaternary deposits of the catchments.