Options
Affolderbach, Christoph
Nom
Affolderbach, Christoph
Affiliation principale
Fonction
Collaborateur scientifique
Email
christoph.affolderbach@unine.ch
Identifiants
Résultat de la recherche
Voici les éléments 1 - 10 sur 21
- PublicationAccès libreA Microcell Atomic Clock Based on a Double-Resonance Ramsey Scheme(2022)
; ; ; ; ;Maddalena Violetti ;Yuanyan Su ;Anja K. Skrivervik - PublicationAccès libreLong-Term Stability Analysis Towards <10-14 Level for a Highly Compact POP Rb Cell Atomic ClockLong-term frequency instabilities in vapor-cell clocks mainly arise from fluctuations of the experimental and environmental parameters that are converted to clock frequency fluctuations via various physical processes. Here, we discuss the frequency sensitivities and the resulting stability limitations at one-day timescale for a rubidium vapor-cell clock based on a compact magnetron-type cavity operated in air (no vacuum environment). Under ambient laboratory conditions, the external atmospheric pressure fluctuations may dominantly limit the clock stability via the barometric effect. We establish a complete longterm instability budget for our clock operated under stable pressure conditions. Where possible, the fluctuations of experimental parameters are measured via the atomic response. The measured clock instability of <2 × 10-14 at one day is limited by the intensity light-shift effect, which could further be reduced by active stabilization of the laser intensity or stronger optical pumping. The analyses reported here show the way toward simple, compact, and low-power vapor-cell atomic clocks with excellent long-term stabilities ≤10-14 at one day when operated in ambient laboratory conditions.
- PublicationAccès libreImpact of microwave-field inhomogeneity in an alkali vapour cell using Ramsey double-resonance spectroscopyWe numerically and experimentally evaluate the impact of the inhomogeneity of the microwave field in the cavity used to perform double-resonance (DR) Ramsey spectroscopy in a buffer gas alkali vapour cell. The Ramsey spectrum is numerically simulated using a simple theoretical model and taking into account the field distribution in a magnetron-type microwave resonator. An experimental evaluation is performed using a DR pulsed optically pumped (POP) atomic clock. It is shown that the sensitivity to the micro-wave power of the DR POP clock can be reproduced from the combination of two inhomogeneities across the vapour cell: microwave field inhomogeneity and atomic ground-state resonance frequency inhomogeneity. Finally, we present the existence of an optimum operation point for which the microwave power sensitivity of our DR POP clock is reduced by two orders of magnitude. It leads into a long-term frequency stability of 1 × 10-14.
- PublicationAccès libreRb vapor-cell clock demonstration with a frequency-doubled telecom laserWe employ a recently developed laser system, based on a low-noise telecom laser emitting around 1.56 μm, to evaluate its impact on the performance of an Rb vapor-cell clock in a continuous-wave double-resonance scheme. The achieved short-term clock instability below 2.5·10−13·τ−1∕2 demonstrates, for the first time, the suitability of a frequency-doubled telecom laser for this specific application. We measure and study quantitatively the impact of laser amplitude and frequency noises and of the ac Stark shift, which limit the clock frequency stability on short timescales. We also report on the detailed noise budgets and demonstrate experimentally that, under certain conditions, the short-term stability of the clock operated with the low-noise telecom laser is improved by a factor of three compared to clock operation using the direct 780-nm laser.
- PublicationAccès libreCharacterization of Frequency-Doubled 1.5-μm Lasers for High-Performance Rb ClocksWe report on the characterization of two fiber-coupled 1.5- μm diode lasers, frequency-doubled and stabilized to Rubidium (Rb) atomic resonances at 780 nm. Such laser systems are of interest in view of their implementation in Rb vaporcell atomic clocks, as an alternative to lasers emitting directly at 780 nm. The spectral properties and the instabilities of the frequency-doubled lasers are evaluated against a state-of-the-art compact Rb-stabilized laser system based on a distributed-feedback laser diode emitting at 780 nm. All three lasers are frequency stabilized using essentially identical Doppler-free spectroscopy schemes. The long-term optical power fluctuations at 780 nm are measured, simultaneously with the frequency instability measurements done by three beat notes established between the three lasers. One of the frequency-doubled laser systems shows at 780 nm excellent spectral properties. Its relative intensity noise <10−12 Hz−1 is one order of magnitude lower than the reference 780-nm laser, and the frequency noise <106 Hz2/Hz is limited by the laser current source. Its optical frequency instability is <4 × 10−12 at τ = 1 s, limited by the reference laser, and better than 1 × 10−11 at all timescales up to one day. We also evaluate the impact of the laser spectral properties and instabilities on the Rb atomic clock performance, in particular taking into account the light-shift effect. Optical power instabilities on long-term timescales, largely originating from the frequency-doubling stage, are identified as a limitation in view of high-performance Rb atomic clocks.
- PublicationMétadonnées seulementOptically-detected spin-echo method for relaxation times measurements in a Rb atomic vapor(2017-6-26)
; ; ; ; ;Jelenkovic, Branislav ;Radojicic, I.SKrmpot, A.Weintroduce and demonstrate an experimental method, optically-detected spin-echo (ODSE), to measure ground-state relaxation times of a rubidium (Rb) atomic vapor held in a glass cell with buffergas. The work is motivated by our studies on high-performance Rb atomic clocks, where both population and coherence relaxation times (T1 and T2, respectively) of the ‘clock transition’ (52S1/2 ∣Fg = 1, mF = 0ñ « ∣Fg = 2, mF = 0ñ) are relevant.OurODSEmethod is inspired by classical nuclear magnetic resonance spin-echo method, combined with optical detection. In contrast to other existing methods, like continuous-wave double-resonance (CW-DR) and Ramsey-DR, principles of the ODSE method allow suppression of decoherence arising from the inhomogeneity of the static magnetic field across the vapor cell, thus enabling measurements of intrinsic relaxation rates, as properties of the cell alone. Our experimental result for the coherence relaxation time, specific for the clock transition, measured with the ODSE method is in good agreement with the theoretical prediction, and the ODSE results are validated by comparison to those obtained with Franzen,CWDRand Ramsey-DR methods. The method is of interest for a wide variety of quantum optics experiments with optical signal readout. - PublicationAccès libreOptically-detected spin-echo method for relaxation times measurements in a Rb atomic vapor(2017)
; ; ; ;Radojičić, I. S ;Krmpot, A. J ;Jelenković, B. MWe introduce and demonstrate an experimental method, optically-detected spin-echo (ODSE), to measure ground-state relaxation times of a rubidium (Rb) atomic vapor held in a glass cell with buffer-gas. The work is motivated by our studies on high-performance Rb atomic clocks, where both population and coherence relaxation times ( T1 and T2 , respectively ) of the ‘ clock transition ’ (52 S1/2 ∣ Fg = 1, mF = 0⟩ ↔ ∣ Fg = 2, mF = 0⟩) are relevant. Our ODSE method is inspired by classical nuclear magnetic resonance spin-echo method, combined with optical detection. In contrast to other existing methods, like continuous-wave double-resonance ( CW-DR ) and Ramsey-DR, principles of the ODSE method allow suppression of decoherence arising from the inhomogeneity of the static magnetic field across the vapor cell, thus enabling measurements of intrinsic relaxation rates, as properties of the cell alone. Our experimental result for the coherence relaxation time, specific for the clock transition, measured with the ODSE method is in good agreement with the theoretical prediction, and the ODSE results are validated by comparison to those obtained with Franzen, CW-DR and Ramsey-DR methods. The method is of interest for a wide variety of quantum optics experiments with optical signal readout. - PublicationAccès libreHigh performance vapour-cell frequency standardsWe report our investigations on a compact high-performance rubidium (Rb) vapour-cell clock based on microwave-optical double-resonance (DR). These studies are done in both DR continuous-wave (CW) and Ramsey schemes using the same Physics Package (PP), with the same Rb vapour cell and a magnetron-type cavity with only 45 cm3 external volume. In the CW-DR scheme, we demonstrate a DR signal with a contrast of 26% and a linewidth of 334 Hz; in Ramsey-DR mode Ramsey signals with higher contrast up to 35% and a linewidth of 160 Hz have been demonstrated. Short-term stabilities of 1.4×10-13 τ-1/2 and 2.4×10-13 τ-1/2 are measured for CW-DR and Ramsey-DR schemes, respectively. In the Ramsey-DR operation, thanks to the separation of light and microwave interactions in time, the light-shift effect has been suppressed which allows improving the long-term clock stability as compared to CW-DR operation. Implementations in miniature atomic clocks are considered.
- PublicationMétadonnées seulementHigh performance vapour-cell frequency standards(: Journal of Physics: Conference Series 723, 2015-10-27)
; ; ; ; ; ; We report our investigations on a compact high-performance rubidium (Rb) vapour-cell clock based on microwave-optical double-resonance (DR). These studies are done in both DR continuous-wave (CW) and Ramsey schemes using the same Physics Package (PP), with the same Rb vapour cell and a magnetron-type cavity with only 45 cm3 external volume. In the CW-DR scheme, we demonstrate a DR signal with a contrast of 26% and a linewidth of 334 Hz; in Ramsey-DR mode Ramsey signals with higher contrast up to 35% and a linewidth of 160 Hz have been demonstrated. Short-term stabilities of 1.4×10^-13 τ^-1/2 and 2.4×10^-13 τ^-1/2 are measured for CW-DR and Ramsey-DR schemes, respectively. In the Ramsey-DR operation, thanks to the separation of light and microwave interactions in time, the light-shift effect has been suppressed which allows improving the long-term clock stability as compared to CW-DR operation. Implementations in miniature atomic clocks are considered. - PublicationMétadonnées seulementAging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks(2015-4-22)
; ; We report an aging study on micro-fabricated alkali vapor cells using neon as a buffer gas. An experimental atomic clock setup is used to measure the cell's intrinsic frequency, by recording the clock frequency shift at different light intensities and extrapolating to zero intensity. We find a drift of the cell's intrinsic frequency of (−5.2 ± 0.6) × 10−11/day and quantify deterministic variations in sources of clock frequency shifts due to the major physical effects to identify the most probable cause of the drift. The measured drift is one order of magnitude stronger than the total frequency variations expected from clock parameter variations and corresponds to a slow reduction of buffer gas pressure inside the cell, which is compatible with the hypothesis of loss of Ne gas from the cell due to its permeation through the cell windows. A negative drift on the intrinsic cell frequency is reproducible for another cell of the same type. Based on the Ne permeation model and the measured cell frequency drift, we determine the permeation constant of Ne through borosilicate glass as (5.7 ± 0.7) × 10−22 m2 s−1 Pa−1 at 81 °C. We propose this method based on frequency metrology in an alkali vapor cell atomic clock setup based on coherent population trapping for measuring permeation constants of inert gases. The authors gratefully acknowledge fruitful discussions with M. Pellaton (Université de Neuchâtel) and S. Karlen (CSEM SA, Neuchâtel, Switzerland) on buffer gas permeation, Y. Pétremand (CSEM) for providing the vapor cells, and D. Varidel (Université de Neuchâtel) for support with the H-maser reference. This work was funded by the Swiss National Science Foundation (FNS) and co-financed by the Swiss Commission for Technology and Innovation (CTI)
- «
- 1 (current)
- 2
- 3
- »