Voici les éléments 1 - 2 sur 2
Vignette d'image
Publication
Accès libre

Biotic effects of the Chicxulub impact, K–T catastrophe and sea level change in Texas

2009, Keller, Gerta, Abramovich, S., Berner, Zsolt, Adatte, Thierry

Biotic effects of the Chicxulub impact, the K–T event and sea level change upon planktic foraminifera were evaluated in a new core and outcrops along the Brazos River, Texas, about 1000 km from the Chicxulub impact crater on Yucatan, Mexico. Sediment deposition occurred in a middle neritic environment that shallowed to inner neritic depths near the end of the Maastrichtian. The sea level fall scoured submarine channels, which were infilled by a sandstone complex with reworked Chicxulub impact spherules and clasts with spherules near the base. The original Chicxulub impact ejecta layer was discovered 45–60 cm below the sandstone complex, and predates the K–T mass extinction by about 300,000 years.
Results show that the Chicxulub impact caused no species extinctions or any other significant biotic effects. The subsequent sea level fall to inner neritic depth resulted in the disappearance of all larger (> 150 μm) deeper dwelling species creating a pseudo-mass extinction and a survivor assemblage of small surface dwellers and low oxygen tolerant taxa. The K–T boundary and mass extinction was identified 40–80 cm above the sandstone complex where all but some heterohelicids, hedbergellids and the disaster opportunistic guembelitrids went extinct, coincident with the evolution of first Danian species and the global δ13C shift. These data reveal that sea level changes profoundly influenced marine assemblages in near shore environments, that the Chicxulub impact and K–T mass extinction are two separate and unrelated events, and that the biotic effects of this impact have been vastly overestimated.

Vignette d'image
Publication
Accès libre

Chicxulub impact predates K–T boundary : New evidence from Brazos, Texas

2007-03-30, Keller, Gerta, Adatte, Thierry, Berner, Zsolt, Harting, Markus, Baum, Gerald, Prauss, Michael, Tantawy, Abdel, Stueben, Doris

Multidisciplinary studies, including stratigraphy, sedimentology, mineralogy and geochemistry, of the new core Mullinax-1 and outcrops along the Brazos River and Cottonmouth Creek, Falls County, Texas, reveal the complex history of the Chicxulub impact, the event deposit and the K–T boundary event. The K–T boundary, as identified by the negative δ13C> shift, first occurrence of Danian planktic foraminifera and palynomorphs occurs 80 cm above the event deposit in core Mullinax-1. The underlying 80 cm interval was deposited in a shallow low oxygen environment during the latest Maastrichtian, as indicated by high stress microfossil assemblages, small shells and burrows infilled with framboidal pyrite. The underlying event deposit, commonly interpreted as K–T impact tsunami, consists of a basal conglomerate with clasts containing Chicxulub impact spherules, repeated upward fining units of spherule-rich sands, followed by hummocky cross-bedded and laminated sands, which are burrowed by Thalassinoides, Planolites and Ophiomorpha and truncated by erosion. This suggests a series of temporally separated storm events with re-colonization of the ocean floor by invertebrates between storms, rather than a series of waning tsunami-generated waves. The lithified clasts with impact spherules at the base of the event deposit provide strong evidence that the Chicxulub impact ejecta layer predates the event deposit, but was eroded and re-deposited during the latest Maastrichtian sea level lowstand. The original Chicxulub ejecta layer was discovered in a 3 cm thick yellow clay layer interbedded in undisturbed late Maastrichtian clay- and mudstones 40 cm below the base of the event deposit and near the base of planktic foraminiferal zone CF1, which spans the last 300 kyr of the Maastrichtian. The yellow clay consists of cheto smectite derived from alteration of impact glass, as indicated by rare altered glass spherules with similar chemical compositions as reworked spherules from the event deposit and Chicxulub impact spherules from NE Mexico and Haiti. The Brazos sections thus provide strong evidence that the Chicxulub impact predates the K–T boundary by about 300 kyr, consistent with earlier observations in NE Mexico and the Chicxulub crater core Yaxcopoil-1.