Options
Adatte, Thierry
RĂ©sultat de la recherche
Evolution of the marine stable carbon-isotope record during the early Cretaceous : A focus on the late Hauterivian and Barremian in the Tethyan realm
2006-02-28, Godet, Alexis, Bodin, Stéphane, Föllmi, Karl B., Vermeulen, Jean, Gardin, Silvia, Fiet, Nicolas, Adatte, Thierry, Berner, Zsolt, Stüben, Doris, Van de Schootbrugge, Bas
In order to improve our understanding of the relationships between the late Hauterivian oceanic anoxic Faraoni event, contemporaneous platform drowning along the northern Tethyan margin and global environmental change in general, we established high-resolution δ13C and δ18O curves for the late Hauterivian and the entire Barremian stage. These data were obtained from whole-rock carbonate samples from the Veveyse de Châtel-Saint-Denis section (Switzerland), the Fiume-Bosso section and the nearby Gorgo a Cerbara section (central Italy), and the Angles section (Barremian stratotype, France). We observe an increase of 0.3‰ in mean δ13C values within sediments from the middle Hauterivian Subsaynella sayni ammonite zone to the Hauterivian–Barremian boundary; δ13C values remain essentially stable during the early Barremian. During the latest early Barremian and most of the late Barremian, δ13C values increase slowly (until the Imerites giraudi zone) and the latest Barremian is characterized by a negative trend in δ13C values, with minimal values at the Barremian–Aptian boundary. During the earliest Aptian, δ13C mean values start to rise again and attain + 2.25‰. We interpret the evolution of the δ13C record as resulting from the interaction between changes in the carbon cycle in the Tethyan basin and the adjacent platforms and continents. In particular, changes towards warmer and more humid conditions on the continent and coeval phases of platform drowning along the northern Tethyan margin may have contributed to enhance the oceanic dissolved inorganic carbon (DIC) reservoir which may have pushed the δ13C record towards more negative values and exerted a general attenuation on the δ13C record. From this may have come the general change from a heterozoan to a photozoan carbonate platform community, which influenced the evolution in δ13C values by increasing the export of aragonite and diminishing export of dissolved organic carbon into the basins.
The late Hauterivian Faraoni oceanic anoxic event in the western Tethys: Evidence from phosphorus burial rates
2006, Bodin, Stéphane, Godet, Alexis, Föllmi, Karl B., Vermeulen, Jean, Arnaud, Hubert, Strasser, André, Fiet, Nicolas, Adatte, Thierry
In the uppermost Hauterivian sediments of the western Tethys, a short-lived anoxic event (Faraoni event) is documented both in the form of an interval enriched in organic matter (pelagic realm) and in a condensed interval enriched in glauconite and phosphate (shelf realm). This latter interval represents the onset of a drowning episode on the Helvetic carbonate platform along the northern tethyan margin that lasted throughout the early Barremian. This drowning episode marks a turning point in the way the platform carbonate factory functioned: during the Hauterivian carbonate production was dominated by heterozoans, whereas during the late Barremian a photozoan assemblage developed that is preserved in the so-called Urgonian limestone. The late Hauterivian Faraoni oceanic anoxic event is of particular interest because it is not accompanied by a major positive shift in δ13C unlike other oceanic anoxic events during the Cretaceous (Valanginian, early Aptian, Cenomanian–Turonian boundary).
We have analyzed four (hemi-)pelagic sections with regards to their phosphorus content to better understand the palaeoceanographic conditions related to this anoxic event and the associated changes in the shallow-water carbonate factory. The sections are located in Angles (SE France), Fiume-Bosso and Gorgo a Cerbara (central Italy), and Veveyse de Châtel-St. Denis (west Switzerland). We calculated phosphorus mass accumulation rates by using a cyclostratigraphic approach in order to obtain an adequate age model. We observe a comparable and correlatable long-term trend for the four sections, which suggests that the phosphorus mass accumulation rates and temporal changes therein are representative for the western tethyan pelagic realm. The Faraoni event is marked by a minimum in phosphorus accumulation and a positive shift in the Corg/Ptot ratios, which is interpreted as a reflection of the decreased capacity of storing and preserving phosphorus in oxygen-depleted sediments. Moreover, the onset in the decrease in phosphorus accumulation coincides with a sea level rise, while the Faraoni level itself corresponds to a maximum flooding interval. This phase of sea-level rise may have been important in the establishment of marine connections between the boreal and tethyan realms and, as such, in the exchange of nutrient-enriched waters. The model for the origin of the Faraoni oceanic anoxic event proposed here incorporates these aspects together with a positive feedback loop generated by phosphorus regeneration and a negative feedback loop related to changes in the ocean oxygen cycle.
The subsequent long-term changes in phosphorus burial rates during the Barremian suggest that the Faraoni event marks the onset of a long period of environmental instability with regards to platform growth, leading to periodic phases of eutrophication and drowning of the northern tethyan carbonate platform. This environmental crisis ended during the late Barremian with the onset of the deposition of the Urgonian limestone under oligotrophic conditions.