Voici les éléments 1 - 2 sur 2
  • Publication
    Accès libre
    Biotic effects of the Chicxulub impact, K–T catastrophe and sea level change in Texas
    (2009)
    Keller, Gerta
    ;
    Abramovich, S.
    ;
    Berner, Zsolt
    ;
    Biotic effects of the Chicxulub impact, the K–T event and sea level change upon planktic foraminifera were evaluated in a new core and outcrops along the Brazos River, Texas, about 1000 km from the Chicxulub impact crater on Yucatan, Mexico. Sediment deposition occurred in a middle neritic environment that shallowed to inner neritic depths near the end of the Maastrichtian. The sea level fall scoured submarine channels, which were infilled by a sandstone complex with reworked Chicxulub impact spherules and clasts with spherules near the base. The original Chicxulub impact ejecta layer was discovered 45–60 cm below the sandstone complex, and predates the K–T mass extinction by about 300,000 years.
    Results show that the Chicxulub impact caused no species extinctions or any other significant biotic effects. The subsequent sea level fall to inner neritic depth resulted in the disappearance of all larger (> 150 μm) deeper dwelling species creating a pseudo-mass extinction and a survivor assemblage of small surface dwellers and low oxygen tolerant taxa. The K–T boundary and mass extinction was identified 40–80 cm above the sandstone complex where all but some heterohelicids, hedbergellids and the disaster opportunistic guembelitrids went extinct, coincident with the evolution of first Danian species and the global δ13C shift. These data reveal that sea level changes profoundly influenced marine assemblages in near shore environments, that the Chicxulub impact and K–T mass extinction are two separate and unrelated events, and that the biotic effects of this impact have been vastly overestimated.
  • Publication
    Accès libre
    Main Deccan volcanism phase ends near the K–T boundary: Evidence from the Krishna–Godavari Basin, SE India
    (2008)
    Keller, Gerta
    ;
    ;
    Gardinc, S.
    ;
    Bartolinic, A.
    ;
    Bajpai, S.
    Recent studies indicate that the bulk (80%) of the Deccan trap eruptions occurred over less than 0.8 m.y. in magnetic polarity C29r spanning the Cretaceous–Tertiary (K–T) boundary. Determining where within this major eruptive phase the K–T mass extinction occurred has remained problematic. For this reason, models estimating the biotic and environmental consequences have generally underestimated the rate and quantity of Deccan gas emissions by orders of magnitude leading to conclusions that volcanism could not have been one of the major causes for the K–T mass extinction. In this study we report that the most massive Deccan trap eruption occurred near the K–T mass extinction.

    These results are based on sedimentologic, microfacies and biostratigraphic data of 4–9 m thick intertrappean sediments in four quarry outcrops in the Rajahmundry area of the Krishna–Godavari Basin of southeastern India. In this area two Deccan basalt flows, known as the Rajahmundry traps, mark the longest lava flows extending 1500 km across the Indian continent and into the Bay of Bengal. The sediments directly overlying the lower Rajahmundry trap contain early Danian planktic foraminiferal assemblages of zone P1a, which mark the evolution in the aftermath of the K–T mass extinction. The upper Rajahmundry trap was deposited in magnetic polarity C29n, preceding full biotic recovery. These results suggest that volcanism may have played critical roles in both the K–T mass extinction and the delayed biotic recovery.