Voici les éléments 1 - 2 sur 2
  • Publication
    Accès libre
    Impact of microwave-field inhomogeneity in an alkali vapour cell using Ramsey double-resonance spectroscopy
    We numerically and experimentally evaluate the impact of the inhomogeneity of the microwave field in the cavity used to perform double-resonance (DR) Ramsey spectroscopy in a buffer gas alkali vapour cell. The Ramsey spectrum is numerically simulated using a simple theoretical model and taking into account the field distribution in a magnetron-type microwave resonator. An experimental evaluation is performed using a DR pulsed optically pumped (POP) atomic clock. It is shown that the sensitivity to the micro-wave power of the DR POP clock can be reproduced from the combination of two inhomogeneities across the vapour cell: microwave field inhomogeneity and atomic ground-state resonance frequency inhomogeneity. Finally, we present the existence of an optimum operation point for which the microwave power sensitivity of our DR POP clock is reduced by two orders of magnitude. It leads into a long-term frequency stability of 1 Ă— 10-14.
  • Publication
    Accès libre
    Long-Term Stability Analysis Towards <10-14 Level for a Highly Compact POP Rb Cell Atomic Clock
    Long-term frequency instabilities in vapor-cell clocks mainly arise from fluctuations of the experimental and environmental parameters that are converted to clock frequency fluctuations via various physical processes. Here, we discuss the frequency sensitivities and the resulting stability limitations at one-day timescale for a rubidium vapor-cell clock based on a compact magnetron-type cavity operated in air (no vacuum environment). Under ambient laboratory conditions, the external atmospheric pressure fluctuations may dominantly limit the clock stability via the barometric effect. We establish a complete longterm instability budget for our clock operated under stable pressure conditions. Where possible, the fluctuations of experimental parameters are measured via the atomic response. The measured clock instability of <2 × 10-14 at one day is limited by the intensity light-shift effect, which could further be reduced by active stabilization of the laser intensity or stronger optical pumping. The analyses reported here show the way toward simple, compact, and low-power vapor-cell atomic clocks with excellent long-term stabilities ≤10-14 at one day when operated in ambient laboratory conditions.