Voici les éléments 1 - 1 sur 1
  • Publication
    Accès libre
    In Situ Direct Displacement Information on Fault Reactivation During Fluid Injection
    (2020-8) ;
    Guglielmi, Y.
    ;
    Nussbaum, Ch.
    ;
    The three dimensional (3D) displacement induced by fluid injection was measured during two fault reactivation experiments conducted in carbonate rocks at the Rustrel Low Noise Underground Laboratory (LSBB URL), France, and in shale rocks at the Mont Terri Rock laboratory, Switzerland. The faults were activated by injecting high pressure fluid and using the Step-Rate Injection Method for Fracture In-Situ Properties, which allows a coupled pressure-flowrate-3D displacement monitoring in boreholes. Both experiments mainly show complex aseismic deformation of preexisting fractures that depend on (1) the fluid pressure variations related to chamber pressurization and leakage into the formation and (2) irreversible shear slip and opening of the reactivated fractures. Here we detail the processing of the 3D displacement data from both experiments to isolate slip vectors from the complex displacement signal. Firstly, we explain the test protocol and describe the in situ hydromechanical behavior of the borehole/fault system. Secondly, we define the methodology of the displacement data processing to isolate slip vectors with high displacement rates, which carry information about the key orientation of fault reactivation. Finally, we discuss which slip vectors can potentially be used to solve the stress inversion problem.