Options
Stoeckli, Fritz
Résultat de la recherche
Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors
2008, Fernández, J. A., Morishita, T., Toyoda, M., Inagaki, M., Stoeckli, Fritz, Centeno, Teresa A.
The present work shows that mesoporous materials obtained by the carbonization of mixtures of poly(vinyl alcohol) with magnesium citrate are very promising candidates for electrodes in supercapacitors. Their high performance arises essentially from a double-layer mechanism through the extent of the total surface area and one obtains at low current density (1 mA cm−2) values as high as 180 F g−1 in aqueous 2 M H2SO4 electrolyte and around 100 F g−1 in 1 M (C2H5)4NBF4 in acetonitrile. Moreover, in most cases the specific capacitance is reduced only by 15% at 100 mA cm−2, as opposed to many other types of carbons which display much higher reductions.
This study suggests that these novel carbons could be potentially more advantageous as electrodes in electrochemical capacitors than templated mesoporous carbons.
Improvement of the structural and chemical properties of a commercial activated carbon for its application in electrochemical capacitors
2008, Lota, G., Centeno, Teresa A., Frackowiak, E., Stoeckli, Fritz
The present paper shows that the performance of an inexpensive activated carbon used in electrochemical capacitors can be significantly enhanced by a simple treatment with KOH at 850 °C. The changes in the specific surface area, as well as in the surface chemistry, lead to high capacitance values, which provide a noticeable energy density.
The KOH-treatment of a commercial activated carbon leads to highly pure carbons with effective surface areas in the range of 1300–1500 m2 g−1 and gravimetric capacitances as high as three times that of the raw carbon.
For re-activated carbons, one obtains at low current density (50 mA g−1) values of 200 F g−1 in aqueous electrolytes (1M H2SO4 and 6M KOH) and around 150 F g−1 in 1M (C2H5)4NBF4 in acetonitrile. Furthermore, the resulting carbons present an enhanced and stable performance for high charge/discharge load in organic and aqueous media.
This work confirms the possibilities offered by immersion calorimetry on its own for the prediction of the specific capacitance of carbons in (C2H5)4NBF4/acetonitrile. On the other hand, it also shows the limitations of this technique to assess, with a good accuracy, the suitability of a carbon to be used as capacitor electrodes operating in aqueous electrolytes (H2SO4 and KOH).
On the specific double-layer capacitance of activated carbons, in relation to their structural and chemical properties
2006, Centeno, Teresa A., Stoeckli, Fritz
Twelve well-characterized activated carbons with average micropore widths between 0.7 and 2 nm, total surface areas of 378–1270 m2g−1 and specific capacitances C up to 320 F g−1 have been investigated, using H2SO4 2 M as electrolyte. Some of the carbons have also been oxidized with (NH4)2S2O8, which leads to specific oxygen contents between 0.4 and 7.1 μmol m−2 of carbon surface area. It appears that Co, the limiting capacitance at a current density of 1 mA cm−2 of electrode surface, does not depend significantly on the oxygen content. An empirical equation is proposed to describe the decrease of C with increasing current density d (1–70 mA cm−2 of electrode surface), as a function of the oxygen content.
As suggested by different authors, Co can be expressed as a sum of contributions from the external surface area Se and the surface of the micropores Smi. A closer investigation shows that Co/Smi increases with the pore size and reaches values as high as 0.250–0.270 F m−2 for supermicropores. It is suggested that the volume Wo* of the electrolyte found between the surface layers in pores wider than 0.7–0.8 nm contributes to Co. However, this property is limited to microporosity, like the enthalpy of immersion of the carbons into benzene. The latter is also correlated to Co, which provides a useful means to identify potential supercapacitors.