Voici les éléments 1 - 2 sur 2
  • Publication
    Métadonnées seulement
    Modelling of water adsorption by activated carbons: effects of microporous structure and oxygen content
    (2004)
    Slasli, A M
    ;
    Jorge, M
    ;
    ;
    Seaton, N A
    The present paper examines the adsorption of water by microporous carbons containing various amounts of surface oxygen and a smaller proportion of basic centres. The modelling of water adsorption for 293 and 310 K, using variable pore size distributions (PSD), confirms that the overall type IV isotherm is the sum of a type I isotherm associated with the specific interactions, and a type V isotherm reflecting the non-specific interactions. The principle of temperature invariance is followed by these isotherms, which indicates that modelling leads to the Dubinin-Astakhov equation. The present approach allows the prediction of water adsorption near room temperature, on the basis of the PSD and the density of oxygen present on the surface area of the micropores. It is assumed, to a first and good approximation, that the pores are slit-shaped and the oxygen distribution is random. (C) 2004 Elsevier Ltd. All rights reserved.
  • Publication
    Accès libre
    The characterization of microporosity in carbons with molecular sieve effects
    (2002) ;
    Slasli, Abdou
    ;
    Hugi-Cleary, Deirdre
    ;
    Guillot, André
    The apparent and the real micropore size distributions (PSDs) of molecular sieve carbons can be assessed by combining the adsorption of CO2 at 273 K with immersion calorimetry into liquids of increasing molecular dimensions. On the basis of model isotherms resulting from computer simulations, the adsorption of carbon dioxide, a relatively small probe, leads to the overall PSD of the carbon (essentially the internal micropore system). Immersion calorimetry, on the other hand, reveals the distribution of the pores accessible directly from the liquid phase, that is without constrictions. Liquid CS2 probes the same volume as CO2 and can be used as a reference. The paper describes the case of an industrial molecular sieve carbon obtained by blocking partly the entrance to a relatively broad micropore system, thus limiting its accessibility to molecules with diameters below 0.5–0.6 nm. It is shown how activation by steam at 900 °C removes the constrictions and leads to a gradual overlap of the two PSDs. The distribution of the pore widths on the surface, observed directly by scanning tunnelling microscopy, is also given.