Voici les éléments 1 - 2 sur 2
  • Publication
    Accès libre
    Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors
    (2008)
    Fernández, J. A.
    ;
    Morishita, T.
    ;
    Toyoda, M.
    ;
    Inagaki, M.
    ;
    ;
    Centeno, Teresa A.
    The present work shows that mesoporous materials obtained by the carbonization of mixtures of poly(vinyl alcohol) with magnesium citrate are very promising candidates for electrodes in supercapacitors. Their high performance arises essentially from a double-layer mechanism through the extent of the total surface area and one obtains at low current density (1 mA cm−2) values as high as 180 F g−1 in aqueous 2 M H2SO4 electrolyte and around 100 F g−1 in 1 M (C2H5)4NBF4 in acetonitrile. Moreover, in most cases the specific capacitance is reduced only by 15% at 100 mA cm−2, as opposed to many other types of carbons which display much higher reductions.

    This study suggests that these novel carbons could be potentially more advantageous as electrodes in electrochemical capacitors than templated mesoporous carbons.
  • Publication
    Accès libre
    On the specific double-layer capacitance of activated carbons, in relation to their structural and chemical properties
    (2006)
    Centeno, Teresa A.
    ;
    Twelve well-characterized activated carbons with average micropore widths between 0.7 and 2 nm, total surface areas of 378–1270 m2g−1 and specific capacitances C up to 320 F g−1 have been investigated, using H2SO4 2 M as electrolyte. Some of the carbons have also been oxidized with (NH4)2S2O8, which leads to specific oxygen contents between 0.4 and 7.1 μmol m−2 of carbon surface area. It appears that Co, the limiting capacitance at a current density of 1 mA cm−2 of electrode surface, does not depend significantly on the oxygen content. An empirical equation is proposed to describe the decrease of C with increasing current density d (1–70 mA cm−2 of electrode surface), as a function of the oxygen content.

    As suggested by different authors, Co can be expressed as a sum of contributions from the external surface area Se and the surface of the micropores Smi. A closer investigation shows that Co/Smi increases with the pore size and reaches values as high as 0.250–0.270 F m−2 for supermicropores. It is suggested that the volume Wo* of the electrolyte found between the surface layers in pores wider than 0.7–0.8 nm contributes to Co. However, this property is limited to microporosity, like the enthalpy of immersion of the carbons into benzene. The latter is also correlated to Co, which provides a useful means to identify potential supercapacitors.