Options
Süss-Fink, Georg
Nom
Süss-Fink, Georg
Affiliation principale
Fonction
Professeur ordinaire
Email
georg.suess-fink@unine.ch
Identifiants
Résultat de la recherche
2 Résultats
Voici les éléments 1 - 2 sur 2
- PublicationAccès libreRegioselective alkane oxygenation with H2O2 catalyzed by titanosilicalite TS-1(2006)
;Shul’pin, Georgiy B. ;Sooknoi, Tawan ;Romakh, Vladimir B.; Shul’pina, Lidia S.Titanosilicalite TS-1 catalyses oxidation of light (methane, ethane, propane and n-butane) and normal higher (hexane, heptane, octane and nonane) alkanes to give the corresponding isomeric alcohols and ketones. The oxidation of higher alkanes proceeds in many cases with a unique regioselectivity. Thus, in the reaction with n-heptane the CH2 groups in position 3 exhibited a reactivity 2.5 times higher than those of the other methylene groups. This selectivity can be enhanced if hexan-3-ol is added to the reaction mixture, the 3-CH2/2-CH2 ratio becoming 10. It is assumed that the unusual selectivity in the oxidation of n-heptane (and other higher alkanes) is due to steric hindrance in the catalyst cavity. As a result, the catalytically active species situated on the catalyst walls can only easily react with certain methylenes of the alkane, which is adsorbed in the cavity taking U-shape (hairpin) conformations. - PublicationAccès libreAlkane oxygenation with H2O2 catalysed by FeCl3 and 2,2′-bipyridine(2005)
;Shul’pin, Georgiy B. ;Golfeto, Camilla C.; ;Shul’pina, Lidia S.Mandelli, DalmoThe H2O2–FeCl3–bipy system in acetonitrile efficiently oxidises alkanes predominantly to alkyl hydroperoxides. Turnover numbers attain 400 after 1 h at 60 °C. It has been assumed that bipy facilitates proton abstraction from a H2O2 molecule coordinated to the iron ion (these reactions are stages in the catalytic cycle generating hydroxyl radicals from the hydrogen peroxide). Hydroxyl radicals then attack alkane molecules finally yielding the alkyl hydroperoxide.