Voici les éléments 1 - 10 sur 18
  • Publication
    Accès libre
    Electron counting and bonding analysis in triruthenium clusters containing sulfoximido ligands : true or false electron-deficient systems ?
    (2001-02-15)
    Saillard, Jean-Yves
    ;
    Kahlal, Samia
    ;
    Ferrand, Vincent
    ;
    ;
    Triruthenium clusters containing a methylphenylsulfoximido cap or bridge, Ru3(CO)9(μ2-H)[μ3-NS(O)MePh] (1), Ru3(CO)10(μ2-H)[μ3-NS(O)MePh] (2), Ru3(CO)8(μ3-η2-CPhCHBu)[μ3-NS(O)MePh] (3), Ru3 (CO)9(μ3-η2-PhCCCCHPh)[μ2-NS(O)MePh] (4), and Ru3(CO)7(μ2-CO)(μ3-η2-PhCCCCHPh)[μ3-NS(O)MePh] (5) have been examined by EHT and DFT calculations in order to analyze the bonding present in the clusters and to establish the electron counting. They clearly show that a μ3-sulfoximido group is not a 3e− ligand as one may be led to think at first sight, but rather acts as a three-orbital/5e− system, i.e. should be considered as isolobal to an N---R− ligand. Because of some delocalization of its π-type orbitals on the sulfur and oxygen atoms, it is expected to bind slightly less strongly to metal atoms than classical imido ligands. Once in a μ2 coordination mode, the sulfoximido ligand retains a lone pair on its pyramidalized N atom and becomes a two-orbital/3e− ligand. It follows that clusters 1, 2, 4 and 5 are electron-precise, whereas cluster 3 is electron deficient with respect to the 18e− rule but obeys the polyhedral skeletal electron pair electron-counting rules. Consistently, all the calculated clusters exhibit large HOMO–LUMO gaps and no trace of electron deficiency can be found in their electronic structures.
  • Publication
    Métadonnées seulement
    The mixed-metal carbonyl cluster anion [Os3Ir(CO)(13)](-): Synthesis, structure, reactivity and catalytic activity in the carbonylation of methanol
    (1999) ;
    Haak, Susanne
    ;
    Ferrand, Vincent
    ;
    The cluster anion [Os3Ir(CO)(13)](-) (1) was prepared in 50% yield by reaction of Os-3(CO)(12) with [Ir(CO)(4)](-). The single-crystal X-ray structure analysis of the bis(triphenylphosphoranylidene)ammonium salt shows 1 to consist of a tetrahedral metal core with one of the 13 carbonyl ligands being bridging. Protonation of 1 led to the neutral cluster HOs3Ir(CO)(13) (2), whereas the hydrogenation gave the cluster anion [H2Os3Ir(CO)(12)](-) (3). The catalytic activity of 1 for the carbonylation of methanol was studied. Using CH3I as co-catalyst, catalytic turnover numbers up to 1800 were obtained (140 degrees C, 30 bar) within 14 h. (C) 1999 Elsevier Science B.V. All rights reserved.
  • Publication
    Accès libre
    Tri- and Tetranuclear Mixed-Metal Clusters Containing Alkyne Ligands : Synthesis and Structure of [Ru3Ir(CO)11(RCCR’)]-, [Ru2Ir(CO)9(RCCR’)]-, and [HRu2Ir(CO)9(RCCR’)]
    (1999)
    Ferrand, Vincent
    ;
    ;
    Neels, Antonia
    ;
    The tetrahedral cluster anion [Ru3Ir(CO)13]- (1) reacts with internal alkynes RCCR to afford the alkyne derivatives [Ru3Ir(CO)11(RCCR)]- (2: R = R’ = Ph; 3: R = R’ = Et; 4: R = Ph; R’ = Me; 5: R = R’ = Me) which have a butterfly arrangement of the Ru3Ir skeleton in which the alkyne is coordinated in a μ4-η2 fashion. Under CO pressure they undergo fragmentation to give the trinuclear cluster anions [Ru2Ir(CO)9 (RCCR)]- (6: R = R’ = Ph; 7: R = R’ = Et; 8: R’ = Ph; R’ = Me; 9: R = R’ = Me), in which the alkyne ligand is coordinated in a μ3-η2 parallel fashion. Protonation of these trinuclear anions leads to the formation of the corresponding neutral hydrido clusters [HRu2Ir(CO)9 (RCCR)] (10: R = R’ = Ph; 11: R = R’ = Et; 12: R = Ph; R’ = Me; 13: R = R’ = Me). The protonation of the butterfly anions 2 and 3, however, gives rise to the formation of the neutral tetrahedral clusters [HRu3Ir(CO)11(RCCR)] (14: R = R’ = Ph and 15: R = R’ = Et), respectively. The analogous clusters [HRu3Ir(CO)11(PhCCCH3)] (16) and [HRu3Ir(CO)11(CH3CCCH3)] (17) are only accessible from the reaction of the neutral cluster [HRu3Ir(CO)13] with the corresponding alkynes. The complexes 2, 4, 5, 6, 10, 12 and 15 are characterised by X-ray structure analysis.
  • Publication
    Métadonnées seulement
    Electron-deficient triruthenium and triosmium clusters from the reaction of the cluster anions [HM3(CO)(11)](-) (M = Ru, Os) with tricyclohexylphosphine in methanol
    (1999) ;
    Godefroy, Isabelle
    ;
    Ferrand, Vincent
    ;
    Neels, Antonia
    ;
    ;
    Kahlal, Samia
    ;
    Saillard, Jean-Yves
    ;
    Garland, Maria Teresa
    The reaction of Na[HRu3(CO)(11)] with an excess of tricyclohexylphosphine in methanol gives the neutral complex H2Ru3(CO)(6)(PCy3)(3) which is the first 44 e(-) triruthenium cluster reported. This highly electron-deficient species reacts with carbon monoxide to give the saturated 48 e(-) cluster Ru-3(CO)(9)(PCy3)(3). The electronic structure of the novel 44 e- cluster was established by EHT and DFT molecular orbital calculations of isoelectronic model compounds. The analogous reaction of [N(PPh3)(2)][HOs3(CO)(11)] with PCy3 in methanol affords the 46 e(-) cluster H2Os3(CO)(7)(PCy3)(3), the first trisubstituted derivative of H2Os3(CO)(10). In all cases methanol acts as source of protons for the formation of the hydride clusters. (C) 1999 Elsevier Science S.A. All rights reserved.
  • Publication
    Métadonnées seulement
    Tri- and tetranuclear mixed-metal clusters containing alkyne ligands: Synthesis and structure of [Ru3Ir(CO)(11)(RCCR ')](-), [Ru2Ir(CO)(9)(RCCR ')](-), and [HRu2Ir(CO)(9)(RCCR ')]
    (1999)
    Ferrand, Vincent
    ;
    ;
    Neels, Antonia
    ;
    The tetrahedral cluster anion [Ru3Ir(CO)(13)](-) (1) reacts with internal alkynes RC=CR' to afford the alkyne derivatives [Ru3Ir(CO)(11) (RCCR')](-) (2: R = R' = Ph; 3: R = R' = Et; 4: R = Ph; R' = Me; 5: R = R' = Me) which have a butterfly arrangement of the Ru,Ir skeleton in which the alkyne is coordinated in mu(4)-eta(2) fashion. Under CO pressure they undergo fragmentation to give the trinuclear cluster anions [Ru2Ir(CO)(9)(RCCR')](-) (6: R = R' = Ph; 7: R = R' = Et; 8: R = Ph; R' = Me; 9: R = R' = Me), in which the alkyne ligand is coordinated in a mu(3)-eta(2) parallel fashion. Protonation of these trinuclear anions leads to the formation of the corresponding neutral hydride clusters [HRu2Ir(Co)(9)(RC=CR')] (10: R = R' = Ph; 11: R = R' = Et; 12: R = Ph; R' = Me; 13: R = R' = Me). The protonation of the butterfly anions 2 and 3, however, gives rise to the formation of the neutral tetrahedral clusters [HRu3Ir(CO)(11)(RCCR')] (14: R = R' = Ph and 15: R = R' = Et), respectively. The analogous clusters [HRu3Ir(CO)(11)(PhCCCH3)] (16) and [HRu3Ir(CO)(11)(CH3CCCH3)] (17) are only accessible from the reaction of the neutral cluster [HRu3Ir(CO)(13)] with the corresponding alkynes. The complexes 2, 4, 5, 6, 10, 12 and 15 are characterised by Xray structure analysis.
  • Publication
    Accès libre
    Fixation and spontaneous dehydrogenation of methanol on a triruthenium–iridium framework: synthesis and structure of the cluster anion [HRu3Ir(CO)12(OMe)]–
    (1999) ;
    Plasseraud, Laurent
    ;
    Ferrand, Vincent
    ;
    The anionic mixed-metal cluster [Ru3Ir(CO)13]–1, found to be catalytically active in the carbonylation of methanol, reacts with methanol at 70 °C to give, with O–H activation of the substrate, the cluster anion [HRu3Ir(CO)12(OMe)]–2, which upon prolonged reaction loses formaldehyde to give the cluster anion [H2Ru3Ir(CO)12]–3; both anions 2 and 3 crystallise together as the double-salt [N(PPh3)2]2[HRu3Ir(CO)12(OMe)][H2Ru3Ir(CO)12] the single-crystal X-ray structure analysis of which reveals a butterfly Ru3Ir skeleton for 2 and a tetrahedral Ru3Ir skeleton for 3.
  • Publication
    Métadonnées seulement
    Site-selective carbonyl substitution in the mixed-metal cluster anion [H2Ru3Ir(CO)(12)](-): synthesis and characterization of phosphine, phosphite, arsine and stibine derivatives
    (1999) ;
    Haak, Susanne
    ;
    Ferrand, Vincent
    ;
    Neels, Antonia
    ;
    The reaction of the mixed-metal carbonyl cluster anion [H2Ru3Ir(CO)(12)](-) with PPh3, PMe3, P(OPh)(3), AsPh3 or SbPh3 leads to the mono-substituted derivatives [H2Ru3Ir(CO)(11)L](-) (L = PPh3 1, L = PMe3 2, L = P(OPh)(3) 3, L = AsPh3 4, L = SbPh3 5). Protonation of the anions 1-5 gives the neutral trihydrido derivatives H3Ru3Ir(CO)(11)L (L = PPh3 6, L = PMe3 7, L = P(OPh)(3) 8, L = AsPh3 9, L = SbPh3 10). All new tetranuclear clusters invariably show a tetrahedral arrangement of the Ru3Ir skeleton, as predicted for 60 e systems. The ligand L is coordinated to one of the ruthenium atoms, except in the case of L = PMe3 where two substitution isomers are observed. While the anionic isomers [H2Ru3Ir(CO)(11)(PMe3)](-) (2) could not be separated, the corresponding neutral isomers H3Ru3Ir(CO)(11)(PMe3) (7) could be resolved by thin-layer chromatography. In isomer 7a, the phosphine ligand is coordinated to one of the ruthenium atoms, whereas in isomer 7b the PMe3 ligand is bonded to the iridium atom. The molecular structures of 1, 7b, 8 and 9 were confirmed by a single-crystal X-ray structure analysis. (C) 1999 Elsevier Science S.A. All rights reserved.
  • Publication
    Métadonnées seulement
    Carbon-carbon coupling reactions of but-2-yne on a triruthenium framework: synthesis and molecular structure of Ru-3(CO)(7)[NS(O)MePh] (HCMeCMeCMeCMeCO) and Ru-3(CO)(8)(CMeCMeCMeCMe)
    (1999)
    Ferrand, Vincent
    ;
    Neels, Antonia
    ;
    ;
    The cluster HRu3(CO)(9)[NS(O)MePh] (1) reacts with two equivalents of MeC=CMe in tetrahydrofuran at 60 degrees C to give the dienonyl derivative Ru-3(CO)(7)[NS(O)MePh] (HCMeCMeCMeCMeCO) (2), along with an isomer mixture of Ru-3(CO)(8)[NS(O)MePh] (HCMeCMe) (3). At 100 degrees C, the same reaction gives rise to the formation of the diendiyl cluster Ru-3(CO)(8)(CMeCMeCMeCMe) (4). The single-crystal structure analyses reveal for 2 a closed Ru-3 skeleton and for 4 an open Ru, framework. (C) 1999 Elsevier Science S.A. All rights reserved.
  • Publication
    Métadonnées seulement
    Triruthenium-iridium clusters containing alkyne ligands: synthesis, structure, and catalytic implications of [(mu-H)IrRu3(CO)(11)(mu(3)-eta(2)-PhC CPh)] and [IrRu3(CO)(10)(mu(4)-eta(2)-PhC CPh)(mu-eta(2)-PhC = CHPh)]
    (1998)
    Ferrand, Vincent
    ;
    ;
    Neels, Antonia
    ;
    The mixed-metal cluster [HIrRu3(CO)(13)] 1 reacts with one equivalent of disubstituted alkynes RC=CR to give [HIrRu3(CO)(11)(mu(3)-eta(2)-RC=CR)] (R = Ph 2; R = Me 3), with a second equivalent of the alkyne the clusters [IrRu3(CO)(10)(mu(4)-eta(2)-RC=CR)(mu-eta(2)-RC=CHR)] (R = Ph 4; R = Me 5) are obtained. The single-crystal X-ray structure analyses of 2 and 3 show these clusters to have a tetrahedral Ru3Ir framework containing the alkyne ligand coordinated in a parallel fashion over the Ru, face of the metal skeleton. In contrast, the clusters 4 and 5 consist of a butterfly arrangement of the Ru3Ir framework with the alkyne ligand coordinated to all four metal atoms, giving an overall octahedral Ru3IrC2 skeleton, as demonstrated by the single-crystal structure analysis of 4. Cluster I,is an excellent catalyst for the hydrogenation of diphenylacetylene to give stilbene (catalytic turnover number 990 within 15 min), clusters 2 and 1 are also catalytically active but seem to represent side-channels of the catalytic cycle.
  • Publication
    Accès libre
    Triruthenium–iridium clusters containing alkyne ligands : synthesis, structure, and catalytic implications of [(µ-H)IrRu3(CO)11(µ3-η2-PhC≡CPh)] and [IrRu3(CO)10(µ4-η2-PhC≡CPh)(µ-η2-PhC=CHPh)]
    (1998)
    Ferrand, Vincent
    ;
    ;
    Neels, Antonia
    ;
    The mixed-metal cluster [HIrRu3(CO)13] 1 reacts with one equivalent of disubstituted alkynes RC≡CR to give [HIrRu3(CO)11(µ3-η2-RC≡CR)] (R = Ph 2; R = Me 3), with a second equivalent of the alkyne the clusters [IrRu3(CO)10(µ4-η2-RC≡CR)(µ-η2-RC=CHR)] (R = Ph 4; R = Me 5) are obtained. The single-crystal X-ray structure analyses of 2 and 3 show these clusters to have a tetrahedral Ru3Ir framework containing the alkyne ligand coordinated in a parallel fashion over the Ru3 face of the metal skeleton. In contrast, the clusters 4 and 5 consist of a butterfly arrangement of the Ru3Ir framework with the alkyne ligand coordinated to all four metal atoms, giving an overall octahedral Ru3IrC2 skeleton, as demonstrated by the single-crystal structure analysis of 4. Cluster 1 is an excellent catalyst for the hydrogenation of diphenylacetylene to give stilbene (catalytic turnover number 990 within 15 min), clusters 2 and 4 are also catalytically active but seem to represent side-channels of the catalytic cycle.