Voici les éléments 1 - 5 sur 5
  • Publication
    Accès libre
    Dinuclear ruthenium sawhorse-type complexes containing bridging ligands with ferrocenyl substituents in endo/endo, endo/exo and exo/exo orientations
    (2006)
    Auzias, Mathieu
    ;
    ;
    Labat, Gaël
    ;
    ;
    The dinuclear ruthenium complexes Ru2(CO)4(OOCC5H4FeC5H5)2L2 (L = NC5H5: 1, L = PPh3: 2) have been synthesized from Ru3(CO)12, ferrocene carboxylic acid and pyridine or triphenylphosphine, respectively. The single-crystal X-ray structure analysis reveals for 1 and 2 a Ru2(CO)4 sawhorse backbone with the two ferrocenyl substituents of the two carboxylato bridges being endo/exo with respect to each other in the solid state. With the new pyridine derivative NC5H4OOCC5H4FeC5H5 (4-ferrocenoyl pyridine) (3) as axial ligand, the complex Ru2(CO)4(OOCC5H4FeC5H5)2(NC5H4OOCC5H4FeC5H5)2 (4) was obtained, the single crystal X-ray structure analysis showing an exo/exo orientation of the two carboxylato bridges in the solid state. The endo/endo orientation is found in the solid-state structure of Ru2(CO)4(HNOCC5H4FeC5H5)2(PPh3)2 (5), the two OCNH bridges being transoïd with respect to each other; this complex is accessible from Ru3(CO)12, ferrocenamide and triphenylphosphine.
  • Publication
    Accès libre
    Dinuclear manganese complexes containing 1,4-dimethyl-1,4,7-triazacyclononane ligands as well as carboxylato and oxo bridges
    (2006)
    Romakh, Vladimir B.
    ;
    ;
    Karmazin-Brelot, Lydia
    ;
    Labat, Gael
    ;
    ;
    Shul’pin, Georgiy B.
    ;
    The reaction of 1,4-dimethyl-1,4,7-triazacyclononane (L-Me2) with MnCl2 • 4H2O in acetonitrile gives, in the presence of sodium formate, hydrogen peroxide, triethylamine and KPF6, the dinuclear Mn(III)–Mn(IV) complex cation [(L-Me2)2Mn2 (O) 2 (OOCH)]2+ (1) which crystallises as the hexafluorophosphate salt.The analogous reaction with sodium benzoate, however, yields the dinuclear Mn(III)–Mn(III) complex cation [(L-Me2)2Mn2 (O)(OOCC6H5)2]2+ (2), isolated also as the hexafluorophosphate salt.In the case of sodium acetate, both cations, the Mn(III)–Mn(IV) complex [(L-Me2)2Mn2 (O) 2 (OOCCH3)]2+ (3) and the known Mn(III)–Mn(III) complex [(L-Me2)2Mn2 (O)(OOCCH3)2]2+ (4) are available, depending upon the molar ratio.The single-crystal X-ray structure analyses show for the green crystals of [1][PF6]1.5 [Cl]0.5 • 1.5 H2O and [3][PF6]2 • (CH3)2CO, a Mn–Mn distance of 2.620(2) and 2.628(4) Å, respectively, while for the red-violet crystal of [4][PF6]2, a Mn–Mn distance of 3.1416(8) Å is observed.All four compounds show catalytic activity for the oxidation of isopropanol with hydrogen peroxide in water and in acetonitrile to give acetone in the presence of oxalic or ascorbic acid as co-catalysts.
  • Publication
    Accès libre
    Dinuclear iron, ruthenium and cobalt complexes containing 1,4-dimethyl-1,4,7-triazacyclononane ligands as well as carboxylato and oxo or hydroxo bridges
    (2006)
    Romakh, Vladimir B.
    ;
    ;
    Labat, Gael
    ;
    ;
    Shul’pin, Georgiy B.
    ;
    The reaction of 1,4-dimethyl-1,4,7-triazacyclononane (L–Me2) with FeSO4 • 7H2O in aqueous ethanol gives, in the presence of sodium carboxylates, hydrogen peroxide, sodium hydroxide and KPF6, the dinuclear Fe(III)–Fe(III) complex cations [(L–Me2)2Fe2(O)(OOCR) 2]2+ (R = H: 1, R = CH3: 2, R = C6H5: 3), which crystallise as the hexafluorophosphate salts. The corresponding reaction with RuCl3 • nH2O does not work, however, the analogous Ru(III)–Ru(III) complex [(L–Me2)2Ru2 (O)(OOCCH3)2]2+ (5) can be synthesised by reacting Ru(dmso)4Cl2 with L–Me2, HCl and air in refluxing ethanol, followed by addition of sodium acetate, the mononuclear intermediate (L–Me2)RuCl3 • H2O (4) being also isolated and characterised. The reaction of L–Me2, sodium acetate, hydrogen peroxide and triethylamine with CoCl2 • 6H2O in acetonitrile yields, however, the hydroxo-bridged Co(III)–Co(III) complex [(L–Me2)2Co2 (OH)(OOCCH3)2]3+ (6). The molecular structures of 2, 5 and 6, solved by single-crystal X-ray structure analyses of the hexafluorophosphate salts, reveal for the orange crystals of [2][PF6]2 a Fe–Fe distance of 3.104(1) Å, for the purple crystals of [5][PF6]2 a Ru–Ru distance of 3.230(1) Å, and for the violet crystals of [6][PF6]3 • (CH3)2CO a Co–Co distance of 3.358(1) Å. All six complexes show catalytic activity for the oxidation of isopropanol with hydrogen peroxide in water to give acetone in the presence of ascorbic acid as co-catalyst.
  • Publication
    Accès libre
    Mono and oligonuclear vanadium complexes as catalysts for alkane oxidation : synthesis, molecular structure, and catalytic potential
    (2004-01-30) ;
    Gonzalez Cuervo, Laura
    ;
    ; ;
    Shul’pin, Georgiy B.
    A series of mono- and oligonuclear vanadium(V) and vanadium(IV) complexes containing various chelating N,O-, N3-, and O2-ligands have been prepared. The biphasic reaction of an aqueous solution of ammonium vanadate and a dichloromethane solution of hexamethylphosphoramide (hmpa) and pyrazine-2-carboxylic acid (pcaH) or pyrazine-2,5-dicarboxylic acid (pdcaH2) or pyridine-2,5-dicarboxylic acid (pycaH2) yields yellow crystals of [VO2 (pca)(hmpa)] (1), [(VO2)2(pdca)(hmpa)2] (2), and [VO2(pycaH)(hmpa)] (3), respectively. The single-crystal X-ray structure analyses reveal 1 and 3 to be mononuclear vanadium(V) complexes, in which a VO2 unit coordinates to one nitrogen and one oxygen atom of a pca or pycaH chelating ligand, and 2 to be a dinuclear vanadium(V) complex, in which two VO2 units are coordinated through one nitrogen and one oxygen atom of a pdca bridging ligand; in the three complexes the vanadium atoms also coordinate to the oxygen atom of a hmpa ligand. The reaction of N,N,N′,N′-tetrakis(2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane (hptbH) and VOSO4 in methanol gives the cationic complex [(VO)4(hptb) 2(μ-O)]4+ (4), which can be crystallized as the perchlorate salt. In this tetranuclear complex, two dinuclear vanadium(IV) units are held together by a μ-oxo bridge. The known complex [VOCl2 (tmtacn)] (5) was synthesized from the reaction of 1,4,7-trimethyl-1,4,7-triazacyclononane (tmtacn) and VCl3 in acetonitrile; the reaction of tetrabutylammonium vanadate with pyro-cathecol (catH2) in acetonitrile gives the known anionic complex [V(cat)3]− (6), in which the vanadium(V) center is bonded to three cat chelating ligands through the oxygen atoms, obtained as the tetrabutylammonium salt. All compounds synthesized are highly efficient oxidation catalysts for the reaction of cyclohexane with air and hydrogen peroxide in the presence of four equivalents of pcaH per vanadium, although the catalytic activity of the complexes containing bulky chelating ligands 4 and 5 is somewhat lower in the initial period of the reaction. During this period the active species are formed from the complexes and final turnover numbers are high. The catecholate ligands of complex 6 may reduce from V(V) to V(IV) in the beginning of the process, thus providing very high initial oxidation rates.
  • Publication
    Accès libre
    New Diphosphine Ligands Containing Ethyleneglycol and Amino Alcohol Spacers for the Rhodium-Catalyzed Carbonylation of Methanol
    (2002)
    Thomas, Christophe M.
    ;
    Mafua, Roger
    ;
    ;
    Rusanov, Eduard
    ;
    ;
    The new diphosphine ligands Ph2PC6H4C(O)X(CH2)2OC(O)C6H4PPh2 (1: X=NH; 2: X=NPh; 3: X=O) and Ph2PC6H4C(O)O(CH2)2O(CH2)2OC(O)C6H4PPh2 (5) as well as the monophosphine ligand Ph2PC6H4C(O)X(CH2)2OH (4) have been prepared from 2-diphenylphosphinobenzoic acid and the corresponding amino alcohols or diols. Coordination of the diphosphine ligands to rhodium, iridium, and platinum resulted in the formation of the square-planar complexes [(PP)Rh(CO)Cl] (6: PP=1; 7: PP=2; 8: PP=3), [(PP)Rh(CO)Cl]2 (9: PP=5), [(P-P)Ir(cod)Cl] (10: PP=1; 11: PP=2; 12: PP=3), [(PP)Ir(CO)Cl] (13: PP=1; 14: PP=2; 15: PP=3), and [(PP)PtI2] (18: PP=2). In all complexes, the diphosphine ligands are trans coordinated to the metal center, thanks to the large spacer groups, which allow the two phosphorus atoms to occupy opposite positions in the square-planar coordination geometry. The trans coordination is demonstrated unambiguously by the single-crystal X-ray structure analysis of complex 18. In the case of the diphosphine ligand 5, the spacer group is so large that dinuclear complexes with ligand 5 in bridging positions are formed, maintaining the trans coordination of the P atoms on each metal center, as shown by the crystal structure analysis of 9. The monophosphine ligand 4 reacts with [{Ir(cod)Cl}2] (cod=cyclooctadiene) to give the simple derivative [(4)Ir(cod)Cl] (16) which is converted into the carbonyl complex [(4)Ir(CO)2Cl] (17) with carbon monoxide. The crystal structure analysis of 16 also reveals a square-planar coordination geometry in which the phosphine ligand occupies a position cis with respect to the chloro ligand. The diphosphine ligands 1, 2, 3, and 5 have been tested as cocatalysts in combination with the catalyst precursors [{Rh(CO)2Cl}2] and [{Ir(cod)Cl}2] or [H2IrCl6] for the carbonylation of methanol at 170 °C and 22 bar CO. The best results (TON 800 after 15 min) are obtained for the combination 2/[{Rh(CO)2Cl}2]. After the catalytic reaction, complex 7 is identified in the reaction mixture and can be isolated; it is active for further runs without loss of catalytic activity.