Voici les éléments 1 - 4 sur 4
Pas de vignette d'image disponible
Publication
Accès libre

Generation of 35-fs pulses from a Kerr lens mode-locked Yb:Lu2O3 thin-disk laser

, Paradis, Clément, Modsching, Norbert, Wittwer, Valentin, Deppe, Bastian, Kränkel, Christian, Südmeyer, Thomas

We investigate Kerr lens mode locking of Yb:Lu2O3 thin-disk laser oscillators operating in the sub-100-fs regime. Pulses as short as 35 fs were generated at an average output power of 1.6 W. These are the shortest pulses directly emitted from a thin-disk laser oscillator. The optical spectrum of the 35-fs pulses is almost 3 times broader than the corresponding emission band of the gain crystal. At slightly longer pulse duration of 49 fs, we achieve an average power of 4.5 W. In addition, 10.7 W are obtained in 88-fs pulses, which is twice higher than the previous power record for ultrafast thin-disk lasers generating pulses shorter than 100 fs. Our results prove that Kerr lens mode-locked Yb:Lu2O3 thin-disk lasers are a promising technology for further average power and pulse energy scaling of ultrafast high-power oscillators operating in the sub-100-fs regime.

Pas de vignette d'image disponible
Publication
Accès libre

Sub-100-fs Kerr lens mode-locked Yb:Lu2O3 thin-disk laser oscillator operating at 21 W average power

, Modsching, Norbert, Drs, Jakub, Fischer, Julien, Paradis, Clément, Labaye, François, Gaponenko, Maxim, Kränkel, Christian, Wittwer, Valentin, Südmeyer, Thomas

We investigate power-scaling of a Kerr lens mode-locked (KLM) Yb:Lu2O3 thin-disk laser (TDL) oscillator operating in the sub-100-fs pulse duration regime. Employing a scheme with higher round-trip gain by increasing the number of passes through the thin-disk gain element, we increase the average power by a factor of two and the optical-to-optical efficiency by a factor of almost three compared to our previous sub-100-fs mode-locking results. The oscillator generates pulses with a duration of 95 fs at 21.1 W average power and 47.9 MHz repetition rate. We discuss the cavity design for continuous-wave and mode-locked operation and the estimation of the focal length of the Kerr lens. Unlike to usual KLM TDL oscillators, an operation at the edge of the stability zone in continuous-wave operation is not required. This work shows that KLM TDL oscillators based on the gain material Yb:Lu2O3 are an excellent choice for power-scaling of laser oscillators in the sub-100-fs regime, and we expect that such lasers will soon operate at power levels in excess of hundred watts.

Pas de vignette d'image disponible
Publication
Accès libre

Carrier-envelope offset frequency stabilization of a thin-disk laser oscillator operating in the strongly self-phase modulation broadened regime

, Modsching, Norbert, Paradis, Clément, Brochard, Pierre, Jornod, Nayara, Gürel, Kutan, Kränkel, Christian, Schilt, Stephane, Wittwer, Valentin, Südmeyer, Thomas

We demonstrate the carrier-envelope offset (CEO) frequency stabilization of a Kerr lens mode-locked Yb:Lu2O3 thin-disk laser oscillator operating in the strongly self-phase modulation (SPM) broadened regime. This novel approach allows overcoming the intrinsic gain bandwidth limit and is suited to support frequency combs from sub-100-fs pulse trains with very high output power. In this work, strong intra-oscillator SPM in the Kerr medium enables the optical spectrum of the oscillating pulse to exceed the bandwidth of the gain material Yb: Lu2O3 by a factor of two. This results in the direct generation of 50-fs pulses without the need for external pulse compression. The oscillator delivers an average power of 4.4 W at a repetition rate of 61 MHz. We investigated the cavity dynamics in this regime by characterizing the transfer function of the laser output power for pump power modulation, both in continuous-wave and mode-locked operations. The cavity dynamics in mode-locked operation limit the CEO modulation bandwidth to ~10 kHz. This value is sufficient to achieve a tight phase-lock of the CEO beat via active feedback to the pump current and yields a residual in-loop integrated CEO phase noise of 197 mrad integrated from 1 Hz to 1 MHz.

Pas de vignette d'image disponible
Publication
Accès libre

Kerr lens mode-locked Yb:CALGO thin-disk laser

, Modsching, Norbert, Paradis, Clément, Labaye, François, Gaponenko, Maxim, Graumann, Ivan J, Diebold, Andreas, Emaury, Florian, Wittwer, Valentin, Südmeyer, Thomas

We demonstrate the first Kerr lens mode-locked Yb:CaGdAlO4 (Yb:CALGO) thin-disk laser oscillator. It generates pulses with a duration of 30 fs at a central wavelength of 1048 nm and a repetition rate of 124 MHz. The laser emits the shortest pulses generated by a thin-disk laser oscillator, equal to the shortest pulse duration obtained by Yb-doped bulk oscillators. The average output power is currently limited to 150 mW by the low gain and limited disk quality. We expect that more suitable Yb:CALGO disks will enable substantially higher power levels with similar pulse durations.