Voici les éléments 1 - 10 sur 11
Pas de vignette d'image disponible
Publication
Accès libre

Inégalités géométriques pour des valeurs propres de Steklov de graphes et de surfaces

2023, Perrin, Hélène, Colbois, Bruno

Cette thèse est consacrée à l’obtention d’inégalités géométriques pour des valeurs propres de Steklov de variétés riemanniennes de dimension 2 et de graphes. Les résultats obtenus concernent différentes situations. D’un côté, je m’intéresse à la géométrie de la première valeur propre non nulle de Steklov σ1 d’un graphe à bord. Pour cette valeur propre, je donne une borne inférieure qui dépend d’une borne supérieure sur le diamètre extrinsèque du bord et d’une borne supérieure sur le nombre de sommets du bord. Un autre résultat est une borne supérieure pour certains sous-graphes d’un graphe de Cayley à croissance polynomiale, qui montre en particulier que σ1 tend vers 0 lorsque le nombre de sommets du sous-graphe tend vers l’infini et généralise ainsi un résultat de Han et Hua obtenu pour des sous-graphes de Zn. Un deuxième but de la thèse est d’obtenir des bornes inférieures pour la première valeur propre non nulle de Steklov σ1 d’une variété riemannienne M dont le bord a plusieurs composantes connexes. Dans ce cas, la géométrie de M loin du bord peut avoir une forte influence sur σ1. Afin de préciser la forme de cette relation on étudie les variétés riemanniennes dont le bord a un voisinage cylindrique. En dimension 2, en supposant que la courbure de Gauss de M est bornée inférieurement, je donne une borne inférieure qui dépend d’une borne supérieure sur le diamètre extrinsèque du bord, d’une borne supérieure sur la longueur du bord et d’une borne inférieure sur la rayon d’injectivité des points d’un certain sous-ensemble de M. Finalement, je donne des bornes inférieure et supérieure pour les premières valeurs propres de Steklov d’une surface hyperbolique à bord géodésique en fonction de la longueur de certaines familles de géodésiques qui séparent le bord. Ce résultat est similaire à un résultat classique de Schoen, Wolpert et Yau pour les valeurspropres du laplacien d’une surface hyperbolique fermée. Abstract The aim of this thesis is to obtain geometric inequalities for Steklov eigenvalues of 2-dimensional Riemannian manifolds and graphs. The results obtained relate to different situations. On the one hand, our interest focuses on the geometry of the first non-zero Steklov eigenvalue σ1 of a graph with boundary. For this eigenvalue, we give a lower bound which depends on an upper bound on the extrinsic diameter of the boundary and on an upper bound on the number of vertices of the boundary. Another result is an upper bound for some subgraphs of a Cayley graph with polynomial growth, which shows in particular that σ1 tends to 0 when the number of vertices of the subgraph tends to infinity and thus generalizes a result of Han and Hua obtained for subgraphs of Zn. A second goal of the thesis is to obtain lower bounds for the first non-zero Steklov eigenvalue σ1 of a Riemannian manifold M whose boundary has several connected components. In this case, the geometry of M far from the boundary can have a strong influence on σ1. In order to specify the form of this relation we study Riemannian manifolds whose boundary has a cylindrical neighborhood. In dimension 2, assuming that the Gaussian curvature of M is bounded below, we give a lower bound which depends on an upper bound on the extrinsic diameter of the boundary, an upper bound on the length of the boundary and a lower bound on the radius of injectivity at the points of a certain subset of M. Finally, we give lower and upper bounds for the first Steklov eigenvalues of hyperbolic surfaces with geodesic boundary, which depend on the length of some families of geodesics that separate the boundary.This result is similar to a classical result of Schoen, Wolpert and Yau for Laplace eigenvalues of a closed hyperbolic surface.

Pas de vignette d'image disponible
Publication
Accès libre

Optimisation du spectre du Laplacien avec conditions de Dirichlet et Neumann dans R² et R³

2015, Berger, Amandine, Colbois, Bruno, Oudet, Edouard

Le problème de l'optimisation des valeurs propres du Laplacien est ancien puisqu'à la fin du XIXème siècle Lord Rayleigh conjecturait que la première valeur propre avec condition de Dirichlet était minimisée par le disque. Depuis le problème a été beaucoup étudié. Et les possibilités de recherches sont multiples : diverses conditions, ajout de contraintes, existence, description des optima ...
Dans ce document on se limite aux conditions de Dirichlet et de Neumann, dans ℝ2 et ℝ3. On procède dans un premier temps à un état de l'art.
On se focalise ensuite sur les disques et les boules. En effet, ils font partie des rares formes pour lesquelles il est possible de calculer explicitement et relativement facilement les valeurs propres. On verra malheureusement que ces formes ne sont la plupart du temps pas des minimiseurs.
Enfin on s'intéresse aux simulations numériques possibles. En effet, puisque peu de calculs théoriques peuvent être faits il est intéressant d'obtenir numériquement des candidats. Cela permet ensuite d'avoir des hypothèses de travail théorique. A cet effet nous donnerons des éléments de compréhension sur une méthode de simulation numérique ainsi que des résultats obtenus., The optimization of Laplacian eigenvalues is a classical problem. In fact, at the end of the nineteenth century, Lord Rayleigh conjectured that the first eigenvalue with Dirichlet boundary condition is minimized by a disk. This problem received a lot of attention since this first study and research possibilities are numerous: various conditions, geometrical constraints added, existence, description of optimal shapes...
In this document we restrict us to Dirichlet and Neumann boundary conditions in ℝ2 et ℝ3. We begin with a state of the art.
Then we focus our study on disks and balls. Indeed, these are some of the only shapes for which it is possible to explicitly and relatively easily compute the eigenvalues. But we show in one of the main result of this document that they are not minimizers for most eigenvalues.
Finally we take an interest in the possible numerical experiments. Since we can do very few theoretical computations, it is interesting to get numerical candidates. Then we can deduce some theoretical working assumptions. With this in mind we give some keys to understand our numerical method and we also give some results obtained.

Pas de vignette d'image disponible
Publication
Accès libre

Laplacians in riemannian geometry: a spectral comparison through discretization

2006, Mantuano, Tatiana, Colbois, Bruno

Le but de cette thèse est d'étudier le spectre de laplaciens apparaissant en géométrie riemannienne (laplacien sur les fonctions, laplacien de Hodge sur les formes différentielles et laplacien brut sur un fibré vectoriel) au travers de la discrétisation. Plus précisément, il s'agit de comparer uniformément le spectre de ces laplaciens à des laplaciens discrets (laplacien combinatoire associé à un graphe, laplacien combinatoire associé à un complexe de cochaînes de Čech et généralisation du laplacien magnétique discret) agissant sur des espaces vectoriels de dimension finie construits grâce à la discrétisation. La comparaison spectrale se veut uniforme dans le sens qu'elle est valable pour une famille de variétés riemanniennes fixée par un certain nombre de paramètres géométriques dont dépendra exclusivement la comparaison. Plusieurs applications de ces comparaisons spectrales sont alors présentées. Citons en particulier la minoration de la première valeur propre non-nulle du laplacien de Hodge, en fonction du volume de la variété (et des paramètres fixés lors de la discrétisation) et l'encadrement de la première valeur propre non-nulle du laplacien brut sur les fibrés vectoriels plats, en fonction de l'holonomie.

Pas de vignette d'image disponible
Publication
Accès libre

Sur le spectre du laplacien des fibrés en tores qui s'effondrent

2003, Jammes, Pierre, Colbois, Bruno

On considère le laplacien agissant sur les formes différentielles d'une variété riemannienne compacte orientée. On sait que si la première valeur propre non nulle du laplacien tend vers zéro quand on fait varier la métrique en maintenant bornés la courbure sectionnelle et le diamètre, alors son volume tend aussi vers zéro, c'est-à-dire qu'elle s'effondre. Ce phénomène de petites valeurs propres soulève deux questions : à quelles conditions (topologiques ou géométriques) existe-t-il des petites valeurs propres quand une variété s'effondre, et, s'il en existe, à quelle vitesse ces valeurs propres tendent-elles vers zéro par rapport au volume ? La première partie de la thèse consiste à étudier de manière détaillée le comportement du spectre dans le cas simple (mais cependant topologiquement assez riche) de fibrés en tores sur le cercle munis de métriques homogènes et s'effondrant sur leur base. Nous montrons comment le nombre de petites valeurs propres dépend à la fois de la topologie du fibré et de la géométrie de l'effondrement. En outre, nous exhibons des exemples simples de fibrés pricipaux qui mettent en évidence le fait que cette hypothèse supplémentaire sur la topologie modifie sensiblement le comportement du spectre. La seconde partie est consacrée à l'étude du spectre du laplacien agissant sur les 1-formes différentielles d'un fibré pricipal en tores quelconque. Nous montrons que lorsque le fibré s'effondre sur sa base, la première valeur propre non nulle du laplacien reste minorée par le carré du volume du fibré, que multiplie une constante dépendant de la géométrie de la base et des bornes sur la géométrie du fibré

Pas de vignette d'image disponible
Publication
Accès libre

Upper bounds for Steklov eigenvalues : from graphs and discretization to hypersurfaces of revolution and numerical experiments

2023, Tschanz, Léonard, Colbois, Bruno

Un des buts de la géométrie spectrale est de comprendre la relation entre la géométrie ou la topologie d’une variété riemannienne et le spectre d’un opérateur différentiel de type laplacien associé à cette variété. Ce concept est résumé dans la célèbre phrase de Mark Kac "Peut-on entendre la forme d’un tambour ?" and constitue un sujet actif de recherche fondamentale. Dans cette thèse on considère le problème de Steklov. Dans une première partie du travail, nous obtenons des bornes supérieures pour les valeurs propres de Steklov σk(Ω, B), où (Ω, B) est un sous-graphe d’un graphe hôte Γ. Le procédé utilisé ici consiste à construire une variété M à partir du sous-graphe, de telle façon que nous contrôlons σk(M), et transférons l’information spectrale au sous-graphe grâce à une méthode appelée discrétisation. Le procédé nous permet de travailler dans deux différentes classes de graphes hôtes : une première classe est composée des graphes de Cayley de groupes à croissance polynomiale, et une seconde classe est composée de graphes de pavage triangulaire du plan hyperbolique. Dans une seconde partie du travail, nous obtenons des bornes supérieures optimales pour la première valeur propre de Steklov d’une hypersurface de révolution M à deux composantes connexes du bord de l’espace euclidien. Pour ce faire, nous comparons σ1(M) avec σD 0 (A) et σN 1 (A), les premières valeurs propres non triviales des problèmes mixtes Steklov-Dirichlet et Steklov-Neumann sur un anneau euclidien A. Afin d’étendre le résultat à toutes les valeurs propres, nous introduisons le concept de longueur critique finie et infinie, ce qui nous amène à faire des expériences numériques qui supportent une conjecture présentée dans le dernier chapitre. ABSTRACT One aim of spectral geometry is to understand the relationship between the geometry or topology of a Riemannian manifold and the spectrum of a differential Laplacian-type operator associated to that manifold. This concept is encapsulated in the famous sentence of Mark Kac "Can one hear the shape of a drum?" and constitutes an active topic of fundamental research. In this thesis we consider the Steklov problem. In a first part of the dissertation, we find upper bounds for the Steklov eigenvalues σk(Ω, B), where (Ω, B) is a subgraph of a host graph Γ. The procedure used here consists in building a manifold M from the subgraph in such a way that we control σk(M), and transfer the spectral piece of information to the subgraph thanks to a method called discretization. This procedure allows us to work on two different classes of host graphs: a first class consists of Cayley graphs of polynomial growth groups, and a second class consists of triangle-tiling graphs of the hyperbolic plane. In a second part of the dissertation, we find sharp upper bounds for the first Steklov eigenvalue of a hypersurface of revolution M with two boundary components of the Euclidean space. To do that, we compare σ1(M) with σD 0 (A) and σN 1 (A), the first non trivial eigenvalues of the mixed Steklov-Dirichlet and Steklov-Neumann problems on a Euclidean annulus A. To extend the result to every eigenvalue, we introduce the concept of finite and infinite critical lengths, which makes us perform some numerical experiments that support a conjecture presented in the last chapter.

Pas de vignette d'image disponible
Publication
Accès libre

Numerical optimization of Dirichlet-Laplace eigenvalues on domains in surfaces

2013, Straubhaar, Régis, Besson, Olivier, Colbois, Bruno

Le spectre de l'opérateur de Laplace-Dirichlet défini sur un domaine borné d'une surface lisse et complète est une suite strictement positive, croissante, tendant vers l'infini. Le but de cette thèse est d'approcher les premières valeurs propres de cet opérateur de manière numérique à l'aide d'une méthode d'éléments finis, puis de considérer le problème d'optimisation suivant: quel est le domaine qui minimise la k-ème valeur propre parmi tous les domaines d'aire donnée, et que vaut cette valeur propre? Ce dernier trouve son origine dans les théorèmes de Faber-Krahn et Krahn-Szegö, qui règlent le cas de la première et de la deuxième valeur propre d'un domaine de l'espace euclidien. Des méthodes en optimisation de forme ont été élaborées pour proposer des domaines candidats à être solution pour des valeurs propres plus élevées ainsi que pour d'autres surfaces sous-jacentes comme la sphère et l'espace hyperbolique. Cela a donné lieu à des observations sur la comparaison de valeurs propres associées à des domaines sur différentes surfaces. Le problème du placement d'un obstacle circulaire à l'intérieur d'une boule afin de maximiser les premières valeurs propres est aussi abordé dans cette thèse.

Pas de vignette d'image disponible
Publication
Accès libre

Réalisation de métriques sur les surfaces compactes

2006, Fillastre, François, Colbois, Bruno, Schlenker, Jean-Marc

Un polyèdre fuchsien de l'espace hyperbolique est une surface polyèdrale invariante sous l'action d'un groupe fuchsien d'isométries (c.a.d. un groupe d'isométries qui laissent globalement invariante une surface totalement géodésique et sur laquelle il agit de manière cocompacte). La métrique induite sur un polyèdre fuchsien convexe est isométrique à une métrique hyperbolique avec des singularités coniques de courbure singulière positive sur une surface compacte de genre >1. On démontre que ces métriques sont en fait réalisées par un unique polyèdre fuchsien convexe (modulo les isométries globales). Ce résultat étend un théorème célèbre de A.D. Alexandrov. On montre aussi que chaque métrique à courbure constante avec des courbures singulières négatives sur une surface compacte de genre >1 peut-être réalisée par un unique polyèdre ``fuchsien'' convexe dans un espace modèle lorentzien. Finalement on présente des extensions possibles de ces résultats, ce qui amène à des énoncés généraux sur la réalisation de métriques sur les surfaces., A Fuchsian polyhedron in hyperbolic space is a polyhedral surface invariant under the action of a Fuchsian group of isometries (i.e. a group of isometries leaving globally invariant a totally geodesic surface, on which it acts cocompactly). The induced metric on a convex Fuchsian polyhedron is isometric to a hyperbolic metric with conical singularities of positive singular curvature on a compact surface of genus >1. We prove that these metrics are actually realised by exactly one convex Fuchsian polyhedron (up to global isometries). This extends a famous theorem of A.D. Alexandrov. We also prove that any constant curvature metric with conical singularities of negative singular curvature on a compact surface of genus >1 can be realised by a unique convex ``Fuchsian'' polyhedron in a Lorentzian space-form. Finally we present some possible expansion of these results, and this leads to general statements about realisation of metrics on surfaces.

Pas de vignette d'image disponible
Publication
Accès libre

Isoperimetric inequalities for Laplace and Steklov problems on Riemannian manifolds

2019, Pétiard, Luc, Colbois, Bruno

Cette thèse porte sur le spectre du laplacien et sur le spectre de l'opérateur Dirichlet-to-Neumann, qu'on étudie sur une variété riemannienne compacte. Nous trouvons en particulier des bornes supérieures pour les valeurs propres, en fonction de la géométrie de la variété.
Plus précisément, nous verrons s'il est possible d'obtenir des bornes supérieures dans lesquelles le terme géométrique est séparé du terme asymptotique, et si ce dernier croît de manière optimale par rapport à la loi de Weyl. Le premier résultat est dédié à la construction d'un contre-exemple à une question provenant du travail de B. Colbois, A. El Soufi et A. Girouard en 2013, dans lequel ils bornent les valeurs propres du laplacien sur une hypersurface $\Sigma$ de dimension $n\geqslant 2$ à l'aide de son quotient isopérimétrique $I(\Sigma)$ : \begin{equation*} \lambda_k(\Sigma)\cdot\left

Pas de vignette d'image disponible
Publication
Accès libre

Bornes supérieures pour les valeurs propres des opérateurs naturels sur des variétés riemanniennes compactes

2012, Hassannezhad, Asma, Colbois, Bruno, El Soufi, Ahmad, Ranjbar-Motlagh, Alireza

The purpose of this thesis is to find upper bounds for the eigenvalues of natural operators acting on functions on a compact Riemannian manifold (M, g) such as the Laplace-Beltrami operator and Laplace-type operators. In the case of the Laplace-Beltrami operator, two aspects are investigated: The first aspect is to study relationships between the intrinsic geometry and eigenvalues of the Laplace-Beltrami operator. In this regard, we obtain upper bounds depending only on the dimension and a conformal invariant called min-conformal volume. Asymptotically, these bounds are consistent with the Weyl law. They improve previous results by Korevaar and Yang and Yau. The proof relies on the construction of a suitable family of disjoint domains providing supports for a family of test functions. This method is powerful and interesting in itself.
The second aspect is to study the interplay of the extrinsic geometry and eigenvalues of the Laplace-Beltrami operator acting on compact submanifolds of RN and of CPN. We investigate an extrinsic invariant called the intersection index studied by Colbois, Dryden and El Soufi. For compact submanifolds of RN, we extend their results and obtain upper bounds which are stable under small perturbation. For compact submanifolds of CPN we obtain an upper bound depending only on the degree of submanifolds and which is sharp for the first eigenvalue.
As a further application of the introduced method, we obtain an upper bound for the eigenvalues of the Steklov problem in a domain with C1 boundary in a complete Riemannian manifold in terms of the isoperimetric ratio of the domain and the min-conformal volume. A modification of our method also leads to have upper bounds for the eigenvalues of Schrödinger operators in terms of the min-conformal volume and integral quantity of the potential. As another application of our method, we obtain upper bounds for the eigenvalues of the Bakry-Emery Laplace operator depending on conformal invariants and properties of the weighted function.

Pas de vignette d'image disponible
Publication
Accès libre

Espaces de longueur d’entropie majorée: Rigidité topologique, adhérence des variétés, noyau de la chaleur

2005, Reviron, Guillemette, Colbois, Bruno, Gallot, Sylvestre

Les théorèmes de (pré)compacité ou de " bornitude " s'établissent généralement sur l'ensemble des variétés de dimension, diamètre et courbure bornés, qui n'est pas complet (donc pas de preuve unifiée de la bornitude des invariants par compacité/continuité). A la différence de la courbure, l'entropie est peu sensible aux variations locales de la métrique ou de la topologie, c'est pourquoi nous nous plaçons sur une famille M ,H,D beaucoup plus vaste : celle des classes d'isométries d'espaces métriques de longueur de diamètre et d'entropie bornés par D et H, qui admettent un revêtement universel et vérifient une condition 1-homotopique dite de -non abélianité. Nous prouvons que M ,H,D est complet, que l'entropie et le spectre marqué des longueurs (resp. le premier nombre de Betti et le groupe fondamental) y sont des fonctions lipschitziennes (resp. localement constantes), qu'on peut y comparer les volumes et les bornes inférieures de courbure de 2 variétés -proches et que le sous-ensemble M ,H,D,V (des variétés de courbure négative et de volume majoré par V) y est d'adhérence compacte. Des majorations universelles du noyau de la chaleur assurent la précompacité de M ,H,D,V pour la distance spectrale et une description des propriétés des espaces-limites. La méthode s'appuie sur une estimation de type Bishop (sans hypothèse de courbure) du volume des boules et sur le calcul d'un = ( ,H,D) universel tel que toute -approximation de Hausdorff (non continue) entre deux espaces X et Y de M ,H,D induise un isomorphisme entre les groupes d'automorphismes de leurs revêtements universels et se relève en une -presque-isométrie -équivariante entre ces revêtements.