Voici les éléments 1 - 9 sur 9
Vignette d'image
Publication
Accès libre

Two properties of volume growth entropy in Hilbert geometry

2014-11-9, Colbois, Bruno, Verovic, Patrick

The aim of this paper is to provide two examples in Hilbert geometry which show that volume growth entropy is not always a limit on the one hand, and that it may vanish for a non-polygonal domain in the plane on the other hand.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Hilbert geometry for convex polygonal domains

2011-1-21, Colbois, Bruno, Vernicos, Constantin, Verovic, Patrick

Pas de vignette d'image disponible
Publication
Métadonnées seulement

L'aire des triangles idéaux en géométrie de Hilbert

2004-12-20, Colbois, Bruno, Vernicos, Constantin, Verovic, Patrick

Vignette d'image
Publication
Accès libre

Laplacian and spectral gap in regular Hilbert geometries

2014-9-19, Barthelmé, Thomas, Colbois, Bruno, Crampon, Mickael, Verovic, Patrick

We study the spectrum of the Finsler--Laplace operator for regular Hilbert geometries, defined by convex sets with C2 boundaries. We show that for an n-dimensional geometry, the spectral gap is bounded above by (n−1)2/4, which we prove to be the infimum of the essential spectrum. We also construct examples of convex sets with arbitrarily small eigenvalues.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Some smooth Finsler deformations of hyperbolic surfaces

2009, Colbois, Bruno, Newberger, Florence, Verovic, Patrick

Given a closed hyperbolic Riemannian surface, the aim of the present paper is to describe an explicit construction of smooth deformations of the hyperbolic metric into Finsler metrics that are not Riemannian and whose properties are such that the classical Riemannian results about entropy rigidity, marked length spectrum rigidity and boundary rigidity all fail to extend to the Finsler category.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Hilbert geometry for strictly convex domains

2004, Colbois, Bruno, Verovic, Patrick

We prove in this paper that the Hilbert geometry associated with a bounded open convex domain C in R-n whose boundary partial derivativeC is a C-2 hypersuface with nonvanishing Gaussian curvature is bi-Lipschitz equivalent to the n-dimensional hyperbolic space H-n. Moreover, we show that the balls in such a Hilbert geometry have the same volume growth entropy as those in H-n.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Hilbert domains that admit a quasi-isometric embedding into Euclidean space

2011-12-21, Colbois, Bruno, Verovic, Patrick

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Area of ideal triangles and Gromov hyperbolicity in Hilbert Geometry

2008, Colbois, Bruno, Vernicos, Constantin, Verovic, Patrick

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Rigidity of Hilbert metrics

2002, Colbois, Bruno, Verovic, Patrick

We study the groups of isometries for Hilbert metrics on bounded open convex domains in R-n and show that if C is such a set with a strictly convex boundary, the Hilbert geometry is asymptotically Riemannian at infinity. As a consequence of this result, we prove there are no Hausdorff quotients of C by isometry subgroups with finite volume except when partial derivativeC is an ellipsoid.