Options
Colbois, Bruno
Nom
Colbois, Bruno
Affiliation principale
Fonction
Professeur ordinaire
Email
Bruno.Colbois@unine.ch
Identifiants
Résultat de la recherche
Voici les éléments 1 - 7 sur 7
- PublicationMétadonnées seulementHilbert domains that admit a quasi-isometric embedding into Euclidean space(2011-12-21)
; Verovic, Patrick - PublicationMétadonnées seulementHilbert geometry for convex polygonal domains(2011-1-21)
; ;Vernicos, ConstantinVerovic, Patrick - PublicationMétadonnées seulementSome smooth Finsler deformations of hyperbolic surfaces(2009)
; ;Newberger, FlorenceVerovic, PatrickGiven a closed hyperbolic Riemannian surface, the aim of the present paper is to describe an explicit construction of smooth deformations of the hyperbolic metric into Finsler metrics that are not Riemannian and whose properties are such that the classical Riemannian results about entropy rigidity, marked length spectrum rigidity and boundary rigidity all fail to extend to the Finsler category. - PublicationMétadonnées seulementArea of ideal triangles and Gromov hyperbolicity in Hilbert Geometry(2008)
; ;Vernicos, ConstantinVerovic, Patrick - PublicationMétadonnées seulementL'aire des triangles idéaux en géométrie de Hilbert(2004-12-20)
; ;Vernicos, ConstantinVerovic, Patrick - PublicationMétadonnées seulementHilbert geometry for strictly convex domains(2004)
; Verovic, PatrickWe prove in this paper that the Hilbert geometry associated with a bounded open convex domain C in R-n whose boundary partial derivativeC is a C-2 hypersuface with nonvanishing Gaussian curvature is bi-Lipschitz equivalent to the n-dimensional hyperbolic space H-n. Moreover, we show that the balls in such a Hilbert geometry have the same volume growth entropy as those in H-n. - PublicationMétadonnées seulementRigidity of Hilbert metrics(2002)
; Verovic, PatrickWe study the groups of isometries for Hilbert metrics on bounded open convex domains in R-n and show that if C is such a set with a strictly convex boundary, the Hilbert geometry is asymptotically Riemannian at infinity. As a consequence of this result, we prove there are no Hausdorff quotients of C by isometry subgroups with finite volume except when partial derivativeC is an ellipsoid.