Options
Colbois, Bruno
Nom
Colbois, Bruno
Affiliation principale
Fonction
Professeur ordinaire
Email
Bruno.Colbois@unine.ch
Identifiants
Résultat de la recherche
Voici les éléments 1 - 2 sur 2
- PublicationAccès libreSpectrum of the Laplacian with weights(2019-3-4)
; El Soufi, AhmadGiven a compact Riemannian manifold $(M,g)$ and two positive functions $\rho$ and $\sigma$, we are interested in the eigenvalues of the Dirichlet energy functional weighted by $\sigma$, with respect to the $L^2$ inner product weighted by $\rho$. Under some regularity conditions on $\rho$ and $\sigma$, these eigenvalues are those of the operator $-\rho^{-1} \mbox{div}(\sigma \nabla u)$ with Neumann conditions on the boundary if $\partial M\ne \emptyset$. We investigate the effect of the weights on eigenvalues and discuss the existence of lower and upper bounds under the condition that the total mass is preserved. - PublicationMétadonnées seulementIsoperimetric control of the Steklov spectrum(2011-6-21)
; ;El Soufi, AhmadWe prove that the normalized Steklov eigenvalues of a bounded domain in a complete Riemannian manifold are bounded above in terms of the inverse of the isoperimetric ratio of the domain. Consequently, the normalized Steklov eigenvalues of a bounded domain in Euclidean space, hyperbolic space or a standard hemisphere are uniforml bounded above. On a compact surface with boundary, we obtain uniform bounds for the normalized Steklov eigenvalues in terms of the genus. We also establish a relationship between the Steklov eigenvalues of a domain and the eigenvalues of the Laplace-Beltrami operator on its boundary hypersurface.