Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Préprint (preprint)
  4. Strongly Vertex-Reinforced-Random-Walk on the complete graph

Strongly Vertex-Reinforced-Random-Walk on the complete graph

Author(s)
Benaim, Michel  
Chaire de probabilités  
Olivier Raimond
Bruno Schapira
Date issued
August 31, 2012
Subjects
math.PR Vertex-Reinforced-Random-Walk complete graph stochastic approximation
Abstract
We study Vertex-Reinforced-Random-Walk on the complete graph with weights of the form $w(n)=n^\alpha$, with $\alpha>1$. Unlike for the Edge-Reinforced-Random-Walk, which in this case localizes a.s. on 2 sites, here we observe various phase transitions, and in particular localization on arbitrary large sets is possible, provided $\alpha$ is close enough to 1. Our proof relies on stochastic approximation techniques. At the end of the paper, we also prove a general result ensuring that any strongly reinforced VRRW on any bounded degree graph localizes a.s. on a finite subgraph.
Later version
https://hal.science/hal-00724639
Publication type
preprint
Identifiers
https://libra.unine.ch/handle/20.500.14713/29863
-
1208.6375v2
File(s)
Loading...
Thumbnail Image
Download
Name

10-32.pdf

Type

Main Article

Size

498.77 KB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new