Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Contribution à un congrès (conference paper)
  4. Near-optimal Bayesian Solution For Unknown Discrete Markov Decision Process

Near-optimal Bayesian Solution For Unknown Discrete Markov Decision Process

Author(s)
Aristide Tossou
Dimitrakakis, Christos  
Chaire de science des données  
Debabrota Basu
Date issued
June 20, 2019
Subjects
cs.LG cs.AI cs.GT stat.ML
Abstract
We tackle the problem of acting in an unknown finite and discrete Markov Decision Process (MDP) for which the expected shortest path from any state to any other state is bounded by a finite number $D$. An MDP consists of $S$ states and $A$ possible actions per state. Upon choosing an action $a_t$ at state $s_t$, one receives a real value reward $r_t$, then one transits to a next state $s_{t+1}$. The reward $r_t$ is generated from a fixed reward distribution depending only on $(s_t, a_t)$ and similarly, the next state $s_{t+1}$ is generated from a fixed transition distribution depending only on $(s_t, a_t)$. The objective is to maximize the accumulated rewards after $T$ interactions. In this paper, we consider the case where the reward distributions, the transitions, $T$ and $D$ are all unknown. We derive the first polynomial time Bayesian algorithm, BUCRL{} that achieves up to logarithm factors, a regret (i.e the difference between the accumulated rewards of the optimal policy and our algorithm) of the optimal order $\tilde{\mathcal{O}}(\sqrt{DSAT})$. Importantly, our result holds with high probability for the worst-case (frequentist) regret and not the weaker notion of Bayesian regret. We perform experiments in a variety of environments that demonstrate the superiority of our algorithm over previous techniques. Our work also illustrates several results that will be of independent interest. In particular, we derive a sharper upper bound for the KL-divergence of Bernoulli random variables. We also derive sharper upper and lower bounds for Beta and Binomial quantiles. All the bound are very simple and only use elementary functions.
Publication type
conference paper
Identifiers
https://libra.unine.ch/handle/20.500.14713/21764
-
1906.09114v2
File(s)
Loading...
Thumbnail Image
Download
Name

1906.09114.pdf

Type

Main Article

Size

5.33 MB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new