Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Perchloroethene source delineation using carbon-chlorine isotopic analysis: field investigations of isotopic signature variability / Perchlorethen-Quellendifferenzierung mittels Kohlenstoff-Chlor-

Perchloroethene source delineation using carbon-chlorine isotopic analysis: field investigations of isotopic signature variability / Perchlorethen-Quellendifferenzierung mittels Kohlenstoff-Chlor-

Author(s)
Badin, Alice  
Faculté des sciences  
Schirmer, Mario  
Centre d'hydrogéologie et de géothermie  
Wermeille, Christiane
Hunkeler, Daniel  
Laboratoire d'hydrochimie et de contaminants  
Date issued
December 2015
In
Springer
Vol
4
No
20
From page
263
To page
270
Reviewed by peer
1
Subjects
Chlorinated ethenes Contaminated site Isotopic signature Source identification
Abstract
When dealing with contaminated sites, identifying the source of contamination is critical for regulatory purposes. For chlorinated ethenes, previous studies have shown that dual carbon-chlorine (C-Cl) stable isotope analysis could be a key to address this issue as isotopic signatures vary between manufacturers and therefore, supposedly between sources. A successful application of this method relies on the assumption that different sources in the field will also show different signatures. Since the solvents used in the past are no longer available, this study aimed at investigating the extent of applicability of C-Cl stable isotope measurements for source identification based on field investigations. Ten sites which covered all of Switzerland and various sectors employing perchloroethene (PCE) were chosen. Differences were observed between some sites, suggesting that this method could be successfully applied. Other sites showed very similar isotopic signatures, indicating that this method applicability is site-specific. Additionally, the isotopic signature variability between sites was less significant than between the values previously reported for solvents from various manufacturers from North America. It was also confirmed that PCE reductive dechlorination should be considered when applying C-Cl isotope analysis for source identification. © 2015, Springer-Verlag Berlin Heidelberg.
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/63864
DOI
10.1007/s00767-015-0301-0
File(s)
Loading...
Thumbnail Image
Download
Name

2021-02-11_110_1762.pdf

Type

Main Article

Size

586.53 KB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new