Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Fluid regimes in the deformation of the Helvetic nappes, Switzerland, as inferred from stable isotope data

Fluid regimes in the deformation of the Helvetic nappes, Switzerland, as inferred from stable isotope data

Author(s)
Burkhard, Martin  
Centre d'hydrogéologie et de géothermie  
Kerrich, Robert
Date issued
1988
In
Contributions to Mineralogy and Petrology, Springer, 1988/99/4/416-429
Abstract
The stable isotope composition of veins, pressure shadows, mylonites and fault breccias in allochthonous Mesozoic carbonate cover units of the Helvetic zone show evidence for concurrent closed and open system of fluid advection at different scales in the tectonic development of the Swiss Alps. Marine carbonates are isotopically uniform, independent of metamorphic grade, where δ<sup>13</sup>C=1.5±1.5 (1 σ) and δ<sup>18</sup>O=25.4±2.2 (1 σ). Total variations of up to 2 in δ<sup>13</sup>C and 1.5 in δ<sup>18</sup>O occur over a cm scale. Calcite in pre- (Type I) and syntectonic (Type II) vein arrays and pressure shadows are mostly in close isotopic compliance with the matrix calcite, to within ±0.5‰, signifying isotopic buffering of pore fluids by host rocks during deformation, and closed system redistribution of carbonate over a cm to m scale. This is consistent with microstructural evidence for pressure solution — precipitation deformation. Type III post-tectonic veins occur throughout 5 km of structural section, extend several km to the basement, and accommodate up to 15% extension. Whereas the main population of Type III veins is isotopically undistinguishable from matrix carbonates, calcite in the largest of these veins is depleted in 18O by up to 23‰ but acquired comparable δ13<sup>C</sup> values. This generation of veins involved geopressurized hydrothermal fluids at 200 to 350° C where δ<sup>18</sup>O H<sub>2</sub>O=–8 to +20‰, representing variable mixtures of <sup>18</sup>O enriched pore and metamorphic fluids, with <sup>18</sup>O depleted meteoric water. Calc-mylonites (δ<sup>18</sup>O=25 to 11‰) at the base of the Helvetic units, and syntectonic veins from the frontal Pennine thrust are characterized by a trend of 18O depletion relative to carbonate protoliths, due to exchange with an isotopically variable reservoir (δ<sup>18</sup>O H2O=20 to 4‰). The upper limiting value corresponds to carbonate-buffered pore fluid, whereas the lower value is interpreted as <sup>18</sup>O-depleted formation brines tectonically expelled at lithostatic pressure from the crystalline basement. Carbonate breccias in one of the large scale late normal faults exchanged with infiltrating 18O-depleted meteoric surface waters (δ<sup>18</sup>O=–8 to –10‰). <br> During the main ductile Alpine deformation, individual lithological units and associated tectonic vein arrays behaved as closed systems, whereas mylonites along thrust faults acted as conduits for tectonically expelled lithostatically pressured reservoirs driven over tens of km. At the latest stages, marked by 5 to 15 km uplift and brittle deformation, low <sup>18</sup>O meteoric surface waters penetrated to depths of several km under hydrostatic gradients.
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/64602
DOI
10.1007/BF00371934
File(s)
Loading...
Thumbnail Image
Download
Name

Burkhard_Martin_-_Fluid_regimes_in_the_deformation_20080819.pdf

Type

Main Article

Size

12.36 MB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new