Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon–chlorine isotope analysis and quantitative PCR

Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon–chlorine isotope analysis and quantitative PCR

Author(s)
Hunkeler, Daniel  
Laboratoire d'hydrochimie et de contaminants  
Abe, Y.
Broholm, M.M.
Jeannotat, S
Westgaard, C
Jacobsen, C.S
Aravena, R
Bjerg, P.L
Publisher
Elsevier
Date issued
2011
In
Journal of Contaminant Hydrology
Vol
119
From page
69
To page
79
Subjects
Groundwater Chlorinated ethenes Biodegradation Stable isotopes qPCR
Abstract
The fate of chlorinated ethenes in a large contaminant plume originating from a tetrachloroethene (PCE) source in a sandy aquifer in Denmark was investigated using novel methods including compound-specific carbon and chlorine isotope analysis and quantitative real-time polymerase chain reaction (qPCR) methods targeting <i>Dehaloccocides</i> sp. and <i>vcr</i>A genes. Redox conditions were characterized as well based on concentrations of dissolved redox sensitive compounds and sulfur isotopes in SO<sup>2</sup><sub>4</sub> ¯.<br> In the first 400 m downgradient of the source, the plume was confined to the upper 20m of the aquifer. Further downgradient it widened in vertical direction due to diverging groundwater flow reaching a depth of up to 50 m. As the plume dipped downward and moved away from the source, O<sub>2</sub> and NO¯<sub>3</sub> decreased to below detection levels, while dissolved Fe<sup>2+</sup> and SO<sup>2</sup><sub>4</sub>¯ increased above detectable concentrations, likely due to pyrite oxidation as confirmed by the depleted sulfur isotope signature of SO<sup>2</sup><sub>4</sub>¯. In the same zone, PCE and trichloroethene (TCE) disappeared and cis-1,2-dichloroethene (cDCE) became the dominant chlorinated ethene. PCE and TCE were likely transformed by reductive dechlorination rather than abiotic reduction by pyrite as indicated by the formation of cDCE and stable carbon isotope data. TCE and cDCE showed carbon isotope trends typical for reductive dechlorination with an initial depletion of <sup>13</sup>C in the daughter products followed by an enrichment of <sup>13</sup>C as degradation proceeded. At 1000 m downgradient of the source, cDCE was the dominant chlorinated ethene and had reached the source δ<sup>13</sup>C value confirming that cDCE was not affected by abiotic or biotic degradation. <br> Further downgradient (up to 1900 m), cDCE became enriched in <sup>13</sup>C by up to 8‰ demonstrating its further transformation while vinylchloride (VC) concentrations remained low (<1 µg/L) and ethene was not observed. The correlated shift of carbon and chlorine isotope ratios of cDCE by 8 and 3.9‰, respectively, the detection of <i>Dehaloccocides</i> sp genes, and strongly reducing conditions in this zone provide strong evidence for reductive dechlorination of cDCE. The significant enrichment of <sup>13</sup>C in VC indicates that VC was transformed further, although the mechanism could not be determined. The transformation of cDCE was the rate limiting step as no accumulation of VC occurred. In summary, the study demonstrates that carbon–chlorine isotope analysis and qPCR combined with traditional approaches can be used to gain detailed insight into the processes that control the fate of chlorinated ethenes in large scale plumes.
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/56982
DOI
10.1016/j.jconhyd.2010.09.009
File(s)
Loading...
Thumbnail Image
Download
Name

Hunkeler_D-Assessing_chlorinated_ethene_degradation-20180109.pdf

Type

Main Article

Size

1.99 MB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new