Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. A generalized Pólya's urn with graph based interactions

A generalized Pólya's urn with graph based interactions

Author(s)
Benaim, Michel  
Chaire de probabilités  
Itai Benjamini
Jun Chen
Yuri Lima
Date issued
2013
In
Random Structures & Algorithms
Vol
46
No
4
From page
614
To page
634
Abstract
Given a finite connected graph G, place a bin at each vertex. Two bins are called a pair if they share an edge of G. At discrete times, a ball is added to each pair of bins. In a pair of bins, one of the bins gets the ball with probability proportional to its current number of balls raised by some fixed power <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/rsa20523-math-0001.png" xlink:title="urn:x-wiley::media:rsa20523:rsa20523-math-0001" />. We characterize the limiting behavior of the proportion of balls in the bins.
The proof uses a dynamical approach to relate the proportion of balls to a vector field. Our main result is that the limit set of the proportion of balls is contained in the equilibria set of the vector field. We also prove that if <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/rsa20523-math-0002.png" xlink:title="urn:x-wiley::media:rsa20523:rsa20523-math-0002" /> then there is a single point <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/rsa20523-math-0003.png" xlink:title="urn:x-wiley::media:rsa20523:rsa20523-math-0003" /> with non‐zero entries such that the proportion converges to <jats:italic>v</jats:italic> almost surely.</jats:p><jats:p>A special case is when <jats:italic>G</jats:italic> is regular and <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/rsa20523-math-0004.png" xlink:title="urn:x-wiley::media:rsa20523:rsa20523-math-0004" />. We show e.g. that if G is non‐bipartite then the proportion of balls in the bins converges to the uniform measure almost surely.
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/63318
DOI
10.1002/rsa.20523
File(s)
Loading...
Thumbnail Image
Download
Name

Bena-m_et_al-2015-Random_Structures_&_Algorithms.pdf

Type

Main Article

Size

172.6 KB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2026 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new