Identification, spatial extent and distribution of fugitive gas migration on the well pad scale
Author(s)
Date issued
February 2019
In
Science of The Total Environnment
No
652
From page
356
To page
366
Abstract
Global methane (CH4) emissions are becoming increasingly important due to the contribution of CH4 to global warming. Leaking oil and gas wells can lead to subsurface CH4 gas migration (GM), which can cause both aquifer contamination and atmospheric emissions. Despite the need to identify and quantify GM at oil and gas well pads, effective and reliable monitoring techniques are lacking. In this field study, we used CH4 and carbon dioxide (CO2) efflux measurements together with soil gas stable carbon isotopic signatures to identify the occurrence and to characterize the spatio-temporal migration of fugitive gas across 17 selected well pads in Northeastern British Columbia, Canada. At 13 of these sites, operators had previously reported the occurrence of GM; however, subsequent inspections based on visual, olfactory or auditory evidence only identified GM at two of these sites. Using the soil gas efflux method, evidence for GM was found at 15 of the 17 well pads with CH4 and CO2 effluxes ranging from 0.017 to 180 μmol m−2 s−1(0.024 to 250 g CH4 m−2 d−1) and 0.50 to 32 μmol m−2 s−1 (1.9 to 122 g CO2 m−2 d−1), respectively. Stable carbon isotopic composition was assessed at 10 of the 17 well pads with 9 well pads showing evidence of GM. The isotopic values indicated that CH4 in soil gas was from the same origin as CH4 in the surface casing vent flow gas. There was no correlation between CH4 effluxes and the distance from the well head; an equal portion of elevated effluxes were detected >10 m from the well head as were detected <5 m from the well head. In addition, CH4 effluxes varied temporally with values changing by up to an order of magnitude over 2 h. Although the study was carried out in Northeastern British Columbia, the results are applicable on a global scale, suggesting that inspections mostly based on visual evidence (e.g. bubbling at the well head) are not reliable for the identification of GM and, that infrequent survey measurements at predefined locations close to the well head may overestimate, underestimate or even miss CH4 effluxes. Repetitive and relatively densely spaced gas efflux measurements using a dynamic closed chamber method proved to be a useful tool for detecting GM.
Publication type
journal article
File(s)![Thumbnail Image]()
Loading...
Name
1-s2.0-S004896971834110X-main.pdf
Type
Main Article
Size
1.51 MB
Format
Adobe PDF
