Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Préprint (preprint)
  4. The asymptotic behavior of fraudulent algorithms

The asymptotic behavior of fraudulent algorithms

Author(s)
Benaim, Michel  
Chaire de probabilités  
Laurent Miclo
Date issued
2024
Abstract
Let U be a Morse function on a compact connected m-dimensional Riemannian manifold, m≥2, satisfying minU=0 and let U={x∈M:U(x)=0} be the set of global minimizers. Consider the stochastic algorithm X(β):=(X(β)(t))t≥0 defined on N=M∖U, whose generator isUΔ⋅−β⟨∇U,∇⋅⟩, where $\beta\in\RR$ is a real parameter.We show that for β>m2−1, X(β)(t) converges a.s.\ as t→∞, toward a point p∈U and that each p∈U has a positive probability to be selected. On the other hand, for β<m2−1, the law of (X(β)(t)) converges in total variation (at an exponential rate) toward the probability measure πβ having density proportional to U(x)−1−β with respect to the Riemannian measure.
Publication type
preprint
Identifiers
https://libra.unine.ch/handle/20.500.14713/29860
-
2401.12605v1
File(s)
Loading...
Thumbnail Image
Download
Name

2401.12605.pdf

Type

Main Article

Size

293.23 KB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2026 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new