Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Les géométries de Hilbert sont à géométrie locale bornée

Les géométries de Hilbert sont à géométrie locale bornée

Author(s)
Colbois, Bruno  
Chaire de géométrie  
Vernicos, Constantin
Date issued
December 21, 2007
In
Annales de l'Institut Fourier
Vol
4
No
57
From page
1359
To page
1375
Subjects
GROMOV-HYPERBOLIC SPACES EMBEDDINGS
Abstract
We prove that the Hilbert geometry of a convex domain in R-n has bounded local geometry, i.e., for a given radius, all balls are bilipschitz to a euclidean domain of R-n. As a consequence, if the Hilbert geometry is also Gromov hyperbolic, then the bottom of its spectrum is strictly positive. We also give a counter exemple in dimension three wich shows that the reciprocal is not true for non plane Hilbert geometries.
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/55317
Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new