Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Laplacian and spectral gap in regular Hilbert geometries

Laplacian and spectral gap in regular Hilbert geometries

Author(s)
Barthelmé, Thomas
Colbois, Bruno  
Chaire de géométrie  
Crampon, Mickael
Verovic, Patrick
Date issued
September 19, 2014
In
Tohoku Math. J.
No
66
From page
377
To page
407
Abstract
We study the spectrum of the Finsler--Laplace operator for regular Hilbert geometries, defined by convex sets with C2 boundaries. We show that for an n-dimensional geometry, the spectral gap is bounded above by (n−1)2/4, which we prove to be the infimum of the essential spectrum. We also construct examples of convex sets with arbitrarily small eigenvalues.
Later version
https://projecteuclid.org/euclid.tmj/1412783204
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/63768
File(s)
Loading...
Thumbnail Image
Download
Name

2020-05-23_777_4582.pdf

Type

Main Article

Size

388.44 KB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new