Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Feature Weighting Strategies in Sentiment Analysis

Feature Weighting Strategies in Sentiment Analysis

Author(s)
Kummer, Olena
Savoy, Jacques  
Institut d'informatique  
Date issued
2012
In
SDAD 2012 : The First International Workshop on Sentiment Discovery from Affective Data
From page
48
To page
55
Subjects
Sentiment Analysis Opinion Detection Kullback-Leibler divergence Natural Language Processing Machine Learning
Abstract
In this paper we propose an adaptation of the Kullback- Leibler divergence score for the task of sentiment and opinion classification on a sentence level. We propose to use the obtained score with the SVM model using different thresholds for pruning the feature set. We argue that the pruning of the feature set for the task of sentiment analysis (SA) may be detrimental to classifiers performance on short text. As an alternative approach, we consider a simple additive scheme that takes into account all of the features. Accuracy rates over 10 fold cross-validation indicate that the latter approach outperforms the SVM classification scheme.
Later version
http://ceur-ws.org/Vol-917/SDAD2012.pdf
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/65809
File(s)
Loading...
Thumbnail Image
Download
Name

Kummer_Olena-Feature_weighting_strategies_in_sentiment_analysis-20130110.pdf

Type

Main Article

Size

554.89 KB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.2.0

© 2026 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new