Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Bounding the eigenvalues of the Laplace-Beltrami operator on compact submanifolds

Bounding the eigenvalues of the Laplace-Beltrami operator on compact submanifolds

Author(s)
Colbois, Bruno  
Chaire de géométrie  
Dryden, Emily B
El Soufi, Ahmad
Date issued
January 21, 2010
In
Bull. Lond. Math. Soc.
Vol
1
No
42
From page
96
To page
108
Subjects
Laplacian eigenvalue upper bound submanifold
Abstract
We give upper bounds for the eigenvalues of the La-place-Beltrami operator of a compact m-dimensional submanifold M of R^{m+p}. Besides the dimension and the volume of the submanifold and the order of the eigenvalue, these bounds depend on either the maximal number of intersection points of M with a p-plane in a generic position (transverse to M), or an invariant which measures the concentration
of the volume of M in R^{m+p}. These bounds are asymptotically optimal in the sense of the Weyl law. On the other hand, we show that even for hypersurfaces (i.e., when p=1), the first positive eigenvalue cannot be controlled only in terms of the volume, the dimension and (for m>2) the differential structure.
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/54204
Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.2.0

© 2026 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new