Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Self-interacting diffusions. III. Symmetric interactions

Self-interacting diffusions. III. Symmetric interactions

Author(s)
Benaim, Michel  
Chaire de probabilités  
Raimond, Olivier
Date issued
2005
In
Annals of Probability
Vol
5
No
33
From page
1716
To page
1759
Subjects
self-interacting random processes reinforced processes THEOREM
Abstract
Let M be a compact Riemannian manifold. A self-interacting diffusion on M is a stochastic process solution to where {W-t} is a Brownian vector field on M and V-x(y) = V(x, y) a smooth function. Let mu(t) = 1/t integral(0)(t) delta X-s ds denote the normalized occupation measure of X-t. We prove that, when V is symmetric, mu(t) converges almost surely to the critical set of a certain nonlinear free energy functional J. Furthermore, J has generically finitely many critical points and mu(t) converges almost surely toward a local minimum of J. Each local minimum has a positive probability to be selected.
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/56161
DOI
10.1214/009117905000000251
File(s)
Loading...
Thumbnail Image
Download
Name

009117905000000251.pdf

Type

Main Article

Size

321.23 KB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new