Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Groundwater inflow to a shallow, poorly-mixed wetland estimated from a mass balance of radon

Groundwater inflow to a shallow, poorly-mixed wetland estimated from a mass balance of radon

Author(s)
Cook, Peter G.
Wood, Cameron
White, Troy
Simmons, Craig Trevor
Fass, T.
Brunner, Philip  
Décanat de la faculté des sciences  
Date issued
May 26, 2008
In
Journal of Hydrology
Vol
1-4
No
354
From page
213
To page
226
Subjects
radon water balance lake dynamics groundwater surface water-ground-water interaction rn-222 exchange tracers stream discharge lakes flux flow
Abstract
Radon activity within a shallow wetland in southern Australia has been measured on three occasions between May and October 2006. Measured activities within the surface water display a similar pattern of spatial variability on each occasion, suggesting that it is related to the locations of groundwater inflow and mixing processes. The mean groundwater inflow rate has been estimated from the mean radon activity using a mass balance approach. The components of the radon budget are (i) contribution from groundwater inflow, (ii) diffusive flux from wetland bottom sediments (iii) loss due to gas exchange, (iv) loss due to radioactive decay, (v) toss due to groundwater or surface water outflow. Also required to complete the water balance are the surface water inflow rate, direct precipitation on the wetland, and evaporation rate. The radon diffusive flux has been estimated from measurements of radon production within the sediments and a diffusive transport model., calibrated by measurements of radon activity in seated chambers that can receive radon only from diffusion and lose it only by radioactive decay. Radon loss due to gas exchange is inferred from the loss rate of SF6, following its injection into isolated areas of the wetland, while the rate of radioactive decay is known. The radon activity in groundwater inflow is measured from sampling piezometers surrounding the wetland. Steady state and transient mass balance approaches yield similar results, with groundwater inflow rates varying between 12 and 18 m(3)/day. Estimated groundwater inflow rates are most sensitive to the radon activity of groundwater inflow, the gas exchange velocity, surface water area and the accuracy with which the mean radon activity in the wetland can be, measured. Importantly, it is relatively insensitive to the surface water inflow rate, which is poorly known. Crown Copyright (c) 2008 Published by Elsevier B.V. All rights reserved.
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/63808
File(s)
Loading...
Thumbnail Image
Download
Name

2021-07-01_2607_4506.pdf

Type

Main Article

Size

444.54 KB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new