Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Exploring substitution random functions composed of stationary multi-Gaussian processes

Exploring substitution random functions composed of stationary multi-Gaussian processes

Author(s)
Straubhaar, Julien  
Centre d'hydrogéologie et de géothermie  
Renard, Philippe  
Poste d'hydrogéologie stochastique et géostatistique  
Date issued
2024
In
Stochastic Environmental Research and Risk Assessment
Vol
38
No
5
From page
1919
To page
1934
Subjects
Stochastic simulation Composition of Gaussian processes Connectivity properties Conditioning
Abstract
Simulation of random felds is widely used in Earth sciences for modeling and uncertainty quantifcation. The spatial features of these felds may have a strong impact on the forecasts made using these felds. For instance, in fow and transport problems the connectivity of the permeability felds is a crucial aspect. Multi-Gaussian random felds are the most common tools to analyze and model continuous felds. Their spatial correlation structure is described by a covariance or variogram model.
However, these types of spatial models are unable to represent highly or poorly connected structures even if a broad range of covariance models can be employed. With this type of model, the regions with values close to the mean are always well connected whereas the regions of low or high values are isolated. Substitution random functions (SRFs) belong to another broad class of random functions that are more fexible. SRFs are constructed by composing (Z = Y◦T) two stochastic processes: the directing function T (latent feld) and the coding process Y (modifying the latent feld in a stochastic manner). In this paper, we study the properties of SRFs obtained by combining stationary multi-Gaussian random felds for both T and Y with bounded variograms. The resulting SRFs Z are stationary, but as T has a fnite variance Z is not ergodic for the mean and the covariance. This means that single realizations behave diferently from each other. We propose a simple technique to control which values (low, intermediate, or high) are connected. It consists of adding a control point on the process Y to guide every single realization. The conditioning to local values is obtained using a Gibbs sampler.
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/62225
DOI
10.1007/S00477-024-02662-X
File(s)
Loading...
Thumbnail Image
Download
Name

s00477-024-02662-x.pdf

Type

Main Article

Size

8.36 MB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new