Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Thèse de doctorat (doctoral thesis)
  4. The Weinstein conjecture with multiplicities on spherizations

The Weinstein conjecture with multiplicities on spherizations

Author(s)
Heistercamp, Muriel
Editor(s)
Schlenk, Félix  
Chaire de systèmes dynamiques  
Bourgeois, F.
Valette, Alain  
Chaire de géométrie algébrique  
Gutt, S.
Abbondandolo, A.
Bertelson, M.
Date issued
2011
Subjects
géométrie symplectique dynamique hamiltonienne fibrés cotangents homologie de Floer flot de Reeb orbites périodiques homologie Morse–Bott symplectic geometry Hamiltonian dynamic cotangent bundles Floer homology Reeb flow periodic orbits Morse–Bott homology
Abstract
Let <i>M</i> be a smooth closed manifold and <i>T∗M</i> its cotangent bundle endowed with the usual symplectic structure <i>ω = dλ</i>, where <i>λ</i> is the Liouville form. A hypersurface Σ ⊂ <i>T∗M</i> is said to be <i>fiberwise starshaped</i> if for each point <i>q</i> ∈ <i>M</i> the intersection Σ <i><sub>q</sub></i> := Σ∩<i>T∗<sub>q</sub>M</i> of Σ with the fiber at <i>q</i> is the smooth boundary of a domain in <i>T∗M</i> which is starshaped with respect to the origin 0<i><sub>q</sub></i> ∈ <i>T∗<sub>q</sub>M</i>. <br><br> In this thesis we give lower bounds on the growth rate of the number of closed Reeb orbits on a <i>fiberwise starshaped hypersurface</i> in terms of the topology of the free loop space of <i>M</i>. We distinguish the two cases that the fundamental group of the base space <i>M</i> has an exponential growth of conjugacy classes or not. If the base space <i>M</i> is simply connected we generalize the theorem of Ballmann and Ziller on the growth of closed geodesics to Reeb flows.
Notes
Thèse de doctorat : Université de Neuchâtel, 2011
Publication type
doctoral thesis
Identifiers
https://libra.unine.ch/handle/20.500.14713/31936
DOI
10.35662/unine-thesis-2221
File(s)
Loading...
Thumbnail Image
Download
Name

00002221.pdf

Type

Main Article

Size

730.64 KB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2026 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new