Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Bayesian Fairness

Bayesian Fairness

Author(s)
Dimitrakakis, Christos  
Chaire de science des données  
Yang Liu
David C. Parkes
Goran Radanovic
Date issued
2019
In
Proceedings of the AAAI Conference on Artificial Intelligence
Vol
33
Abstract
We consider the problem of how decision making can be fair when the underlying probabilistic model of the world is not known with certainty. We argue that recent notions of fairness in machine learning need to explicitly incorporate parameter uncertainty, hence we introduce the notion of Bayesian fairness as a suitable candidate for fair decision rules. Using balance, a definition of fairness introduced in (Kleinberg, Mullainathan, and Raghavan 2016), we show how a Bayesian perspective can lead to well-performing and fair decision rules even under high uncertainty.
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/64459
DOI
10.1609/aaai.v33i01.3301509
File(s)
Loading...
Thumbnail Image
Download
Name

3824-Article Text-6882-1-10-20190701.pdf

Type

Main Article

Size

359.9 KB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.2.0

© 2026 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new