Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Integrating aerial geophysical data in multiple-point statistics simulations to assist groundwater flow models

Integrating aerial geophysical data in multiple-point statistics simulations to assist groundwater flow models

Author(s)
Dickson, Neil
Comte, Jean-Christophe
Renard, Philippe  
Poste d'hydrogéologie stochastique et géostatistique  
Straubhaar, Julien  
Centre d'hydrogéologie et de géothermie  
McKinley, Jennifer
Ofterdinger, Ulrich
Date issued
October 2015
In
Hydrogeology Journal
No
23
From page
883
To page
900
Reviewed by peer
1
Subjects
Aerial magnetics Multiple-point statistics Heterogeneity Groundwater flow UK
Abstract
The process of accounting for heterogeneity has made significant advances in statistical research, primarily in the framework of stochastic analysis and the development of multiple-point statistics (MPS). Among MPS techniques, the direct sampling (DS) method is tested to determine its ability to delineate heterogeneity from aerial magnetics data in a regional sandstone aquifer intruded by low-permeability volcanic dykes in Northern Ireland, UK. The use of two two-dimensional bivariate training images aids in creating spatial probability distributions of heterogeneities of hydrogeological interest, despite relatively `noisy' magnetics data (i.e. including hydrogeologically irrelevant urban noise and regional geologic effects). These distributions are incorporated into a hierarchy system where previously published density function and upscaling methods are applied to derive regional distributions of equivalent hydraulic conductivity tensor K. Several K models, as determined by several stochastic realisations of MPS dyke locations, are computed within groundwater flow models and evaluated by comparing modelled heads with field observations. Results show a significant improvement in model calibration when compared to a simplistic homogeneous and isotropic aquifer model that does not account for the dyke occurrence evidenced by airborne magnetic data. The best model is obtained when normal and reverse polarity dykes are computed separately within MPS simulations and when a probability threshold of 0.7 is applied. The presented stochastic approach also provides improvement when compared to a previously published deterministic anisotropic model based on the unprocessed (i.e. noisy) airborne magnetics. This demonstrates the potential of coupling MPS to airborne geophysical data for regional groundwater modelling.
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/60411
DOI
10.1007/s10040-015-1258-x
File(s)
Loading...
Thumbnail Image
Download
Name

2023-01-10_110_6243.pdf

Type

Main Article

Size

14.9 MB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.2.0

© 2026 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new