Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. High-dimensional near-optimal experiment design for drug discovery via Bayesian sparse sampling

High-dimensional near-optimal experiment design for drug discovery via Bayesian sparse sampling

Author(s)
Hannes Eriksson
Dimitrakakis, Christos  
Chaire de science des données  
Lars Carlsson
Date issued
April 23, 2021
In
Computing Research Repository (CoRR)
Vol
2104-11834
Subjects
Machine Learning (cs.LG) Quantitative Methods (q-bio.QM) Machine Learning (stat.ML)
Abstract
We study the problem of performing automated experiment design for drug screening through Bayesian inference and optimisation. In particular, we compare and contrast the behaviour of linear-Gaussian models and Gaussian processes, when used in conjunction with upper confidence bound algorithms, Thompson sampling, or bounded horizon tree search. We show that non-myopic sophisticated exploration techniques using sparse tree search have a distinct advantage over methods such as Thompson sampling or upper confidence bounds in this setting. We demonstrate the significant superiority of the approach over existing and synthetic datasets of drug toxicity.
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/64439
DOI
10.48550/arXiv.2104.11834
-
2104.11834v1
File(s)
Loading...
Thumbnail Image
Download
Name

2104.11834.pdf

Type

Main Article

Size

412.66 KB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.2.0

© 2026 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new