Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Thèse de doctorat (doctoral thesis)
  4. Stochastic simulation of rainfall and climate variables using the direct sampling technique

Stochastic simulation of rainfall and climate variables using the direct sampling technique

Author(s)
Oriani, Fabio  
Faculté des sciences  
Editor(s)
Renard, Philippe  
Poste d'hydrogéologie stochastique et géostatistique  
Date issued
2015
Subjects
stochastique simulation pluie climat multi-point géostatistique non-paramétrique stochastic simulation rainfall climate multiple-point geostatistics non-parametric
Abstract
An accurate statistical representation of hydrological processes is of paramount importance to evaluate the uncertainty of the present scenario and make reliable predictions in a changing climate. A wealth of historic data has been made available in the last decades, including a consistent amount of remote sensing imagery describing the spatio-temporal nature of climatic and hydrological processes. The statistics based on such data are quite robust and reliable. However, to explore their variability, most stochastic simulation methods are based on low-order statistics that can only represent the heterogeneity up to a certain degree of complexity.<br> In the recent years, the stochastic hydrogeology group of the University of Neuchâtel has developed a multiple-point simulation method called Direct Sampling (DS). DS is a resampling technique that allows the preservation of the complex data structure by simply generating data patterns similar to the ones found in the historical data set. Contrarily to the other multiple-point methods, DS can simulate either categorical or continuous variables, or a combination of both in a multivariate framework. <br> In this thesis, the DS algorithm is adapted to the simulation of rainfall and climate variables in both time and space. The developed stochastic weather or climate generators include the simulation of the target variable with a series of auxiliary variables describing some aspects of the complex statistical structure characterizing the simulated process. These methods are tested on real application cases including the simulation of rainfall time-series from different climates, the variability exploration of future climate change scenarios, the missing data simulation within flow rate time-series and the simulation of spatial rainfall fields at different scales. If a representative training data set is used, the proposed methodologies can generate realistic simulations, preserving fairly well the statistical properties of the heterogeneity. Moreover, these techniques result to be practical simulation tools, since they are adaptive to different data sets with minimal effort from the user perspective. Although leaving large room for improvement, the proposed simulation approaches show a good potential to explore the variability of complex hydrological processes without the need of a complex statistical model.
Notes
Keywords: stochastic, simulation, rainfall, climate, multiple-point, geostatistics, non-parametric Thèse de doctorat : Université de Neuchâtel, 2015
Publication type
doctoral thesis
Identifiers
https://libra.unine.ch/handle/20.500.14713/32047
DOI
10.35662/unine-thesis-2464
File(s)
Loading...
Thumbnail Image
Download
Name

00002464.pdf

Type

Main Article

Size

12.96 MB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2026 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new