Carbon and Chlorine Isotope Ratios of Chlorinated Ethenes Migrating through a Thick Unsaturated Zone of a Sandy Aquifer
Author(s)
Aravena, R
Shouakar-Stash, O
Weisbrod, N
Nasser, A
Netzer, L
Ronen, D
Date issued
2011
In
Environmental Science & Technology, American Chemical Society, 2011/45//8247-8253
Abstract
Compound-specific isotope analysis (CSIA) can potentially be used to relate vapor phase contamination by volatile organic compounds (VOCs) to their subsurface sources. This field and modeling study investigated how isotope ratios evolve during migration of gaseous chlorinated ethenes across a 18 m thick unsaturated zone of a sandy coastal plain aquifer. At the site, high concentrations of tetrachloroethene (PCE up to 380 µg/L), trichloroethene (TCE up to 31,600 µg/L), and <i>cis</i>-1,2-dichloroethene (cDCE up to 680 µg/L) were detected in groundwater. Chlorinated ethene concentrations were highest at the water table and steadily decreased upward toward the land surface and downward below the water table. Although isotopologues have different diffusion coefficients, constant carbon and chlorine isotope ratios were observed throughout the unsaturated zone, which corresponded to the isotope ratios measured at the water table. In the saturated zone, TCE became increasingly depleted along a concentration gradient, possibly due to isotope fractionation associated with aqueous phase diffusion. These results indicate that carbon and chlorine isotopes can be used to link vapor phase contamination to their source even if extensive migration of the vapors occurs. However, the numerical model revealed that constant isotope ratios are only expected for systems close to steady state.
Publication type
journal article
File(s)![Thumbnail Image]()
Loading...
Name
Hunkeler_D-Carbon_and_Chlorine_Isotope-20180115.pdf
Type
Main Article
Size
2.83 MB
Format
Adobe PDF
